Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Chris_Mi_handout

.pdf
Скачиваний:
11
Добавлен:
01.06.2015
Размер:
2.8 Mб
Скачать

Braking Example

Determine the energy expected when bringing a 3000lb vehicle to a halt from a speed of 60mph in 10 seconds

Energy = ½ * mass * V^2 = ½ * 3000/2.2 * (26.8 m/s)^2

= 489709 joules = 0.136 kW h

Using average speed of 30mph, the vehicle will travel 44 ft/second or 440 ft in 10 seconds,

Assume an average drag force of 100 lbf, drag loss is =100*4.455*440/3.28=59762 joules=0.0166 kW.h

Energy can be recovered is 0.136 - 0.0166 = 0.1194 Power (in 10 seconds) = 43kW

59

HEV Propulsion System Design

The design requirements related to vehicle power typically specified by a customer are:

the initial acceleration

rated velocity on a given slope

maximum % grade

maximum steady state velocity

The complete design is a complex issue involving numerous variables, constraints, considerations and judgment, which is beyond the scope of this course.

60

30

HEV Design Steps

Power and energy requirement from the propulsion unit is determined from a given set of vehicle cruising and acceleration specifications

Component level design:

Electrical and Mechanical engineers design the electric motor for EV or the combination of electric motor and internal combustion engine for HEVs.

Power electronics engineers design the power conversion unit which links the energy source with the electric motor.

Controls engineer working in conjunction with the power electronics engineer develops the propulsion control system.

Electrochemists and Chemical engineers design the energy source based on the energy requirement and guidelines of the vehicle manufacturer.

Vehicle design is an iterative process; several designers have to interact with each other to meet the design goals.

61

Summary

Vehicular forces include rolling resistance, gravitation, aerodynamic and traction force

Traction and braking are achieved due to slip ratio on the wheel

Vehicle dynamics can be derived from its kinetic motion

Vehicle performance can be mathematically calculated with given traction force, or demanded traction force can be determined if a desired vehicle velocity profile is given

HEV powertrain can be generally smaller due to the nature of electric motor used. The power splitting or combining is managed by vehicle control to maximize fuel economy and performance

Rating of a powertrain can be determined using the vehicle data and design requirements

62

31

Solutions to Example 1

V

 

(F

 

) =

K1

= 53.2

1.45×10

3 F

0.0883

T

TR

 

K2

 

 

 

 

 

 

TR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

 

=

FTR

gC

 

K

 

=

ρ

C A

 

+ gC

 

1

 

 

m

 

0

 

2

 

2m

0 F

 

1

V

= 42.45.4m/s, V = 60mph = 27m / s,t

f

= 1

tanh1 (v

f

K

1

/ K

2

)

T

f

K1 K

 

 

 

 

 

 

 

2

 

 

 

 

 

 

v(t) = 42.45 tanh(1.22×102 t)

 

PT (t) = FTVT

tanh(

K1 K2 t)

PT

=

1 PT (t)dt =

FTVT

1 ln[cosh( K1 K2 t)]

 

 

t f

t f K1 K2

63

Solutions to Example 2

(a) From the force balance equation, the tractive force is:

(b) The instantaneous power is

(c) The energy lost due to non-conservative forces

(d) The kinetic energy of the vehicle is

Therefore, the change in tractive energy is

FTR FAD Froll = m dvdt

FTR (t) = m dvdt + ρ2 CD AF v2 +mg(C0 +C1v2 )

= 464.88t +.02192t4 +62.78N.

PTR (t) = FTR (t) v(t)

=135.07t3 +.00637t6 +18.24t2W.

Eloss = 010 v(FAD + Froll )dt = 010 0.29055t2 (0.0219t4 +62.78)dt

=15,180J.

 

KE = 1 m[v(10)2 v(0)2

]= 337,677J

2

 

eTR =15,180 +337,677

= 352,857J.

64

32

Hybrid Electric Vehicles: Control,

Design, and Applications

Prof. Chris Mi

Department of Electrical and Computer Engineering

University of Michigan - Dearborn

4901 Evergreen Road, Dearborn, MI 48128 USA

email: chrismi@umich.edu

Tel: (313) 583-6434

Fax: (313)583-6336

Part 3

HEV Modeling and Simulation

2

1

Outline

Vehicle Dynamics

Modeling Basics

Vehicle Performance

Modeling Examples

Modeling using Simplorer

3

Objectives

After completing this session, you will be able to

Write vehicle dynamic equations

Setup simulation models using the dynamic equations

Simulate vehicle performance for constant tractive force

Simulate required tractive force for a desired vehicle velocity profile or gradeability

Perform simulation using Ansoft Simplorer or related tool, using block diagrams

4

2

 

Forces Acting on a Vehicle

V

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W

 

 

 

 

 

 

 

 

h

 

 

 

 

 

 

 

 

w

 

 

 

 

 

 

 

 

 

 

 

 

O

M

 

 

 

 

 

 

 

Vg

si

 

 

 

 

 

 

 

 

n

 

 

 

 

T

 

 

 

α

 

 

 

 

rf

 

 

 

 

 

 

 

 

 

F

 

 

h

 

 

 

 

 

 

g

 

 

 

 

 

t

 

 

 

 

 

 

M

 

 

 

 

 

 

 

 

Vg

c

 

 

 

 

 

 

 

 

o

 

 

 

T

 

 

W

 

s

α

 

 

 

 

 

 

MVg

rr

 

 

f

L

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

• Tractive force

 

 

 

 

L

 

α

 

 

 

 

b

 

 

 

 

L

 

 

• Aerodynamic

 

 

 

 

 

W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Gravitational

 

 

 

 

 

 

r

 

 

 

 

 

 

 

• Rolling

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Dynamics of Vehicle Motion: Quarter

Vehicle Model

The dynamic equation of motion in the tangential direction, neglecting weight shift, is

Km m dVdt = FTR Fr

where Km is the rotational inertia coefficient to compensate for the apparent increase in the vehicle’s mass due to the onboard rotating mass

Typically, 1.08< Km < 1.1

6

3

Start the Modeling Process (Using

Simulink or Simplorer)

The integration of dv/dt is speed

The integration of v is distance

7

To Get dv/dt

Use the vehicle dynamic equations to derive dv/dt

Km m dVdt = FTR Fr

dVdt = (FTR Fr ) /(Km m)

8

4

To Get Total Resistive Force Fr

Fr = Fg+Froll+Fa

While all forces are functions of speed

9

For Constant Tractive Force

10

5

Vehicle Dynamics Simulation Model

Inputs to the simulation model:

Roadway slope α

Propulsion Force Ft

Road Load Force Fr

Outputs:

Vehicle velocity V

Distance traversed s

FTR

 

V(t)

Vehicle

 

 

 

Kinetics

 

Grade

Model

S(t)

 

11

The Speed Profile with constant tractive force

 

33.80

 

 

Velocity (m/s)

20.00

 

 

 

 

 

 

0

 

 

 

0

100.00

189.00

Time (s)

12

6

With 1800Nm Tractive Force

 

84.50

 

 

Velocity (m/s)

50.00

 

 

 

 

 

 

0

 

 

 

0

100.00

189.00

Time (s)

13

Driving Cycles

 

100

 

 

Urban

 

 

 

 

km/h

 

 

 

 

 

 

 

 

 

 

driving

 

 

 

 

50

 

 

 

 

 

 

 

 

Speed,

 

 

 

 

 

 

 

 

0 0

 

 

 

 

 

 

 

 

 

200

400

600

800

 

1000

1200

1400

 

100

 

 

 

 

 

 

 

 

km/h

50

 

 

 

Highway

 

 

 

 

Speed,

 

 

 

 

 

 

 

 

 

 

 

driving

 

 

 

 

0 0

 

 

 

 

 

 

 

 

 

100

200

300

400

500

600

700

800

Driving time, sec.

14

7

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]