Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Chris_Mi_handout

.pdf
Скачиваний:
11
Добавлен:
01.06.2015
Размер:
2.8 Mб
Скачать

Questions

51

Hybrid Electric Vehicles: Control,

Design, and Applications

Prof. Chris Mi

Department of Electrical and Computer Engineering

University of Michigan - Dearborn

4901 Evergreen Road, Dearborn, MI 48128 USA

email: chrismi@umich.edu

Tel: (313) 583-6434

Fax: (313)583-6336

Part 2

HEV Fundamentals

2

1

Outline

Vehicle Resistance

Traction and Slip Model

Vehicle Dynamics

Transmission

Vehicle Performance

Fuel Economy and Improvements

Braking Performance

Power Management

Vehicle Control

 

 

 

 

 

 

 

 

3

 

Forces Acting on a Vehicle

V

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W

 

 

 

 

 

 

 

h

 

 

 

 

 

 

 

 

w

 

 

 

 

 

 

 

 

 

 

 

 

 

O

M

 

 

 

 

 

 

 

Vg

si

 

 

 

 

 

 

 

 

n

 

 

 

 

T

 

 

 

α

 

 

 

 

rf

 

 

 

 

 

 

 

 

 

F

 

 

h

 

 

 

 

 

 

g

 

 

 

 

 

t

 

 

 

 

 

 

M

 

 

 

 

 

 

 

 

Vg

c

 

 

 

 

 

 

 

 

o

 

 

 

T

 

 

W

 

s

α

 

 

 

 

 

 

MVg

rr

 

 

f

L

 

 

 

 

 

 

 

 

 

• Tractive force

 

a

 

 

 

 

 

 

 

 

 

L

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

• Aerodynamic

 

 

 

L

 

 

 

 

 

 

 

W

• Gravitational

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

• Rolling

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

2

Grading Resistance - Gravitational

The gravitational force, Fg depends on the slope of the roadway; it is positive when climbing a grade and is negative when descending a downgrade roadway. Where α is the grade angle with respect to the horizon, m is the total mass of the vehicle, g is the gravitational acceleration constant.

Fg = mg sinα

H

O

M

 

Vg s

 

 

inα

 

 

h

α

 

g

 

 

M

 

 

Vg

 

 

cos

 

 

α

 

 

MVg

α

L

5

 

Rolling Resistance

 

• On hard road surfaces

 

 

Caused by hysteresis of tire

 

 

 

material

 

P

Deflection of the carcass

 

 

 

while the tire is rolling

F

Moving direction

The hysteresis causes

 

 

r

 

asymmetric distribution of

 

 

ground reaction

 

rd

The pressure in the leading

 

 

 

 

half is larger than the

 

 

 

trailing half of the contact

 

z

 

surface

 

 

 

 

Results in ground force

 

a

 

shifting forward

 

 

 

 

P

 

 

 

6

3

Rolling Resistance

 

• On soft road surfaces

 

 

– Caused by the deformation

P

 

of the ground surface

 

 

 

– The ground reaction force

F

Moving direction

almost completely shifts to

 

 

r

the leading half

 

 

 

 

z

Px

 

 

 

 

Pz

7

Rolling Resistance

• The rolling resistance force is given by

 

sgn[V ]mg(C +C V 2 )

if

 

V 0

 

 

 

 

 

 

 

 

 

0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fr

=

FTR Fg

 

if

V = 0

and

 

FTR

Fg

 

 

C0 mg

 

 

 

 

 

sgn(F F )(C

mg)

if

V = 0

and

 

 

F

F

 

 

 

> C

mg

 

 

 

 

 

 

 

TR

g 0

 

 

 

 

 

 

TR

g

 

 

0

 

 

1

V > 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sgn[V ] =

V < 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

where V is vehicle speed, FTR is the total tractive force, C0 and C1 are rolling coefficients

8

4

Typical Rolling Coefficient

C0 is the maximum rolling

Condition

Rolling

 

resistance at standstill

 

coefficient C0

0.004 < C0 < 0.02

Car tire on

0.013

concrete or

 

(unitless)

asphalt

 

C1 << C0 (S2/m2)

Rolled gravel

0.02

Approximation

Unpaved road

0.05

 

C0

= 0.01

Field

0.1-0.35

 

Truck tires on

0.006-0.01

 

 

 

V

concrete of

 

C = C

asphalt

 

 

Wheels on rails

0.001-0.002

 

1

 

0 100

 

 

 

 

 

9

 

 

Aerodynamic Drag Force

 

 

High pressure

Low pressure

 

 

 

 

 

 

 

 

Moving direction

 

 

 

 

 

 

10

5

Aerodynamic Drag Force FAD

The aerodynamic drag force, FAD is the viscous resistance of the air against the motion.

ρ: Air density

CD : Aerodynamic drag coefficient

AF : Equivalent frontal area of the vehicle

Vω : Head-wind velocity

FAD = sgn[V ]{0.5ρCD AF (V +Vω )2 }

11

Typical Drag Coefficients

Vehicle Typ e

Coefficient of Aerodymanic Resistance

 

Open convertible

0.5...0.7

Van body

0.5...0.7

Ponton body

0.4...0.55

Wed ge-shaped body; headlamp s and

0.3...0.4

bump ers are integrated into the body ,

 

covered underbody, optimized cooling

 

air flow.

 

Headlamp and all wheels in

0.2...0.25

body , covered underbody

 

K-shaped (small breakway

0.23

section)

 

Optimum streamlined design

0.15...0.20

Trucks, road trains

0.8...1.5

Buses

0.6...0.7

Streamlined buses

0.3...0.4

M otorcycles

0.6...0.7

12

6

Traction and Tire Slip Ratio Model

Tractive force is introduced due to “slip” between the wheel and the vehicle linear speed

Slip is defined as the relative difference of wheel speed and vehicle speed

Braking force is generated by negative slip ratio

Tractive force is proportional to adhesive coefficient

There is a maximum tractive effect; beyond that the wheel will spin on the ground

For traction : λ =

Vω V

for Braking : λ =

Vω V

Vω

V

 

 

13

Typical Traction (adhesive) Coefficient

coefficient

B

Longitudinal

 

 

 

A

 

 

 

µp

 

effort

 

 

 

Lateral

µs

Tractive

 

 

 

 

 

 

O0

15~20

50

100 %

 

 

Slip

 

14

7

Adhesive Coefficient for Different Road Conditions

For almost all road conditions, braking force reaches maximum around 0.15-0.20 slip ratio.

For traction, we need to control the torque not to exceed the maximum limited by the tire ground cohesion.

For braking, we need to control the braking torque so that slip ratio is maintained at optimum, therefore, maximum braking effect can be achieved.

15

Dynamics of Vehicle Motion: Quarter

Vehicle Model

The dynamic equation of motion in the tangential direction, neglecting weight shift, is

Km m dVdt = FTR Fr

where Km is the rotational inertia coefficient to compensate for the apparent increase in the vehicle’s mass due to the onboard rotating mass.

Typically, 1.08< Km < 1.1

16

8

Propulsion Power

Torque at the vehicle wheels is obtained from the power relation

P=Tωω=FtV where

Tω is the tractive torque in N-m,

ω is the angular velocity in rads/sec, Ft is in N

• The angular velocity and the vehicle speed is related by

V=ωrd

17

In Steady State

FT = mg[sinα +C0 sgn(V )]

+sgn(V )[mgC1

+ρ2 CD AF ]V 2

18

9

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]