Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
STM32f407 AD9248.docx
Скачиваний:
134
Добавлен:
31.05.2015
Размер:
1.1 Mб
Скачать

25

СОДЕРЖАНИЕ

ВВЕДЕНИЕ …………………………………………………………………...4

1. ОБЗОР ЛИТЕРАТУРЫ ……………………………………………………....6

2. ВЫБОР ЭЛЕМЕНТНОЙ БАЗЫ. ОБОСНОВАНИЕ ВЫБОРА…………...11

3. СХЕМОТЕХНИЧЕСКАЯ ЧАСТЬ………………………………….………21

4. ПРОГРАММНАЯ ЧАСТЬ……………………………………………….….22

ЗАКЛЮЧЕНИЕ…………………………………………………………..….23

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ…………………….....24

ПРИЛОЖЕНИЕ А – Схема электрическая функциональная

ПРИЛОЖЕНИЕ Б – Схема электрическая принципиальная

ПРИЛОЖЕНИЕ В – Перечень элементов

ПРИЛОЖЕНИЕ Г – Алгоритмы работы системы

ВВЕДЕНИЕ

На протяжении многих десятилетий осциллограф был необходимым инструментом при ведении исследований и проектировании устройств, обеспечивая неиссякаемый поток нововведений во многих отраслях. Одной из основных характеристик осциллографа является длина памяти - количество точек выборки, преобразуемых осциллографом в цифровую форму и сохраняемых в течение одного цикла регистрации.

Чем больше длина памяти, тем больше время, в течение которого осциллограф может фиксировать сигнал с высоким разрешением по времени (с высокой частотой дискретизации). Первые цифровые осциллографы могли регистрировать и хранить всего 500 точек, что серьезно затрудняло сбор всей необходимой информации об исследуемом событии. Разработчики постоянно сталкивались с проблемой выбора - регистрировать сигнал в течение длительного периода времени с низким разрешением или в течение короткого периода времени с высоким разрешением, тогда как необходимо было выполнить оба условия: зарегистрировать сигнал за длительный период времени с высоким разрешением.

Со временем технология развивалась, и скорость, удобство и стоимость преобразования сигнала в цифровую форму с более высоким разрешением становились более приемлемыми. Однако в то же время возросли скорости тактового сигнала, топология шин эволюционировала через параллельные устройства с более широкими и быстрыми импульсами, а также переход к последовательным шинам, системы в целом стали существенно более сложными. В этих условиях требования разработчиков к приборам с увеличенной длиной памяти и высоким разрешением продолжали расти так же быстро (или даже быстрее), как возможности увеличения продолжительности записи, которыми располагали производители осциллографов. И эта тенденция будет сохраняться. Электроника развиваеться ускоренными темпами, системы становятся все более сложными, а, следовательно, усложняется их проектирование, производство, устранение неполадок и ремонт в случае поломки. Как это отражается на современных осциллографах? Поскольку устройства становятся более быстродействующими и сложными, растут требования к длине памяти, полосе пропускания и частоте дискретизации.

  1. Обзор литературы

Классификация осциллографов.

По назначению и способу вывода измерительной информации:

  • Осциллографы с периодической развёрткой для непосредственного наблюдения формы сигнала на экране (электронно-лучевом, жидкокристаллическом и т. д.) .

  • Осциллографы с непрерывной развёрткой для регистрации кривой на фотоленте (шлейфовый осциллограф) — в зап.-европ. языках oscillograph

По способу обработки входного сигнала:

  • Аналоговый.

  • Цифровой.

По количеству лучей:

  • Однолучевые, двулучевые и т. д. Количество лучей может достигать 16-ти и более (n-лучевой осциллограф имеет nное количество сигнальных входов и может одновременно отображать на экране n графиков входных сигналов).

Осциллографы с периодической развёрткой делятся на:

  • универсальные (обычные), скоростные, стробоскопические, запоминающие и специальные; цифровые осциллографы могут сочетать возможность использования разных функций.

Также существуют осциллографы, совмещенные с другими измерительными приборами (напр. мультиметром).

Осциллограф также может существовать не только в качестве автономного прибора, но и в виде приставки к компьютеру (подключаемой через какой-либо порт: LPT, COM, USB, вход звуковой карты).

Основные рабочие характеристики осциллографов

Основными параметрами, которые определяют возможности и степень функциональности цифровых осциллографов, являются рабочие характеристики, понимание которых позволяет потенциальным пользователям при выборе прибора оценить и сравнить между собой разные модели из широкого ассортимента, предлагаемого современными разработчиками.

Полоса пропускания -максимальная частота пропускания прибора и равна частоте, на которой амплитуда сигнала уменьшается до 70,7% значения или на 3дБ (логарифмическая зависимость). Но для цифровых осциллографов следует различать понятия полосы пропускания для повторяющихся сигналов и полосы пропускания для однократных сигналов. Первая из них не зависит от такой характеристики как частота дискретизации, и имеет достаточно высокое значение по той причине, что осциллограф воспроизводит повторяющийся сигнал за несколько запусков. Что касается работы с однократными или с непериодическими сигналами, то в этом случае полоса пропускания зависит от частоты дискретизации, так как осциллографу необходимо захватить и оцифровать полученный сигнал за один такт.

При выборе цифрового осциллографа существует правило, что полоса пропускания должна минимум в три раза превышать значения основных частот исследуемых сигналов и чем больше соотношение (может достигать 10:1), тем точнее результат выдает осциллограф.

Также следует отметить еще одну характеристику, которая определяет требования пользователя к полосе частот, время нарастания фронта импульса. Ведь очень часто исследуемые сигналы содержат множество гармоник на частотах, отличающихся от фундаментальных значений частот тестируемого сигнала, и, например, если пользователь рассматривает прямоугольный сигнал, то на самом деле он содержит частоты, по меньшей мере, в 10 раз превышающие базовую частоту исследуемого сигнала. И если значение полосы частот осциллографа будет неудовлетворительным, то при тестировании сигналов на экране вместо чётких и ясных краёв, характеризующих высокую скорость нарастания фронта импульса, будут отображаться закруглённые углы.

Частота дискретизации – равна скорости, с которой осциллограф может оцифровывать входной сигнал. Эта характеристика, как уже отмечалось выше, при более высоких значениях отвечает за более высокие значения полосы пропускания однократных сигналов и, соответственно, дает лучшее разрешение. Следует также отметить, что указанное в инструкции значение частоты дискретизации касается только одного канала, а при работе с несколькими каналами одновременно значение этой характеристики уменьшается и приводит к появлению искаженных сигналов. Еще одним важным замечанием для пользователей служит то, что большинство осциллографов работают на максимальной частоте дискретизации только на самых быстрых скоростях развертки, а на медленных скоростях развертки частота дискретизации автоматически уменьшается.

Объем памяти – характеристика цифрового осциллографа, которая связана со значением частоты дискретизации, а также зависит от требуемого времени непрерывного анализа. Приборы с большим объемом памяти позволяют просматривать захваченные сигналы длительные периоды времени с большим разрешением между точками. Для каждого конкретного случая, принимая во внимание значения временного интервала (ВИ) и частоты дискретизации (ЧД), можно рассчитать величину объема памяти (ОП) следующим образом: ОП=ЧД×ВИ.

Поскольку глубина памяти осциллографов ограничена, то, соответственно, возникает необходимость в ограничении частоты выборки, по той причине, что чем глубже память осциллографа, тем больше времени выделяется на захват точек данных при максимальном значении частоты дискретизации.

Из описанного выше можно сделать два простых вывода:

Для сохранения максимальной частоты дискретизации при увеличении значений коэффициента развертки необходимо увеличивать размер внутренней памяти;

При уменьшении длинны внутренней памяти и постоянном коэффициенте развертки, частота дискретизации неизбежно уменьшается.

Количество каналов – характеристика цифровых осциллографов, которая обеспечивает пользователю возможность одновременного исследования двух или больше сигналов. Следует отметить, что на сегодняшний день наибольшим спросом пользуются двух канальные осциллографы. Существуют также осциллографы, включающие в себя как основные, так и дополнительные каналы. В этом случае в осциллографе имеются аналогово-цифровые преобразователи для основных каналов, а дополнительные каналы используются для работы с цифровыми сигналами.

Режимы синхронизации – запуск осциллографа по фронту (перепаду) используется большинством пользователей и есть достаточным для решения общих задач. Но при постановке более сложных проблем (исследование сигналов сложных форм) возникает потребность в использовании дополнительных возможностей по запуску. Современные модели осциллографов предлагают дополнительные функции запусков, например, по логическому состоянию, по импульсной помехе, по телевизионному или видеосигналу и т.д.

Существуют семь возможных режимов запуска для осциллографов RIGOL серии DS1000: по фронту, длительности импульса, по скорости нарастания, по видеосигналу, чередующийся, по заданному шаблону логического состояния, а также его продолжительности (осциллографы для смешанных типов сигналов).

Режимы курсорных измерений – позволяют производить амплитудные или временные измерения путем установки вертикальных или горизонтальных курсоров в нужные точки осциллограммы. Например, при амплитудных измерениях можно определить значение размаха или разности напряжений, а при временных измерениях – разность значений по оси времени. На рисунке.1 показано пример курсорных измерений резонансной частоты сигнала при помощи осциллографов RIGOL серии DS1000 при использовании запуска по нарастающему фронту.

Рисунок 1 - Курсорные измерения резонансной частоты сигнала осциллографами RIGOL серии DS1000.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]