Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИКА.docx
Скачиваний:
33
Добавлен:
27.05.2015
Размер:
601.67 Кб
Скачать

2)Второе начало термодинамики

 Второй закон термодинамики исключает возможность создания вечного двигателя второго рода. Имеется несколько различных, но в то же время эквивалентных формулировок этого закона.

1 — Постулат Клаузиуса. Процесс, при котором не происходит других изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым, то есть теплота не может перейти от холодного тела к горячему без каких-либо других изменений в системе. Это явление называют рассеиванием или диссипацией энергии.

2 — Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких-либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

Билет № 10

1)Применение 1-го начала к изотермическому процессу

Изотермический процесс (T=const). Изотермический процесс описывается законом Бойля—Мариотта:

Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу, которая расположена на диаграмме тем выше, чем выше температура, при которой происходит процесс.

Исходя из формул для работы газа и уравнения Менделеева-Клайперона найдем работу изотермического расширения газа:

Так как при Т=const внутренняя энергия идеального газа не изменяется:

то из первого начала термодинамики (δQ=dU+δA) следует, что для изотермического процесса

т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:

Значит, для того чтобы при расширении газа температура не становилась меньше, к газу в течение изотермического процесса необходимо подводить количество теплоты, равное внешней работе расширения.

2)Энергия заряженного проводника

Как известно, заряд сосредоточивается на поверхности проводника, причем поверхность проводника эквипотенциальна(с одинаковым значением потенциала). Разбивая эту поверхность на маленькие участки, каждый из которых имеет заряд Δq, и учитывая, что потенциал в месте расположения каждого из зарядов одинаков, имеем

(6.7)

Так как емкость проводника C=q/φ , то выражение (6.7) может быть также представлено, как

Билет № 11

1)Скорость произвольного движения

Для характеристики движения материальной точки вводят векторную физическую величину - скорость, определяющую как быстроту движения, так и направление движения в данный момент времени.

Мгновенная скорость или скорость в данный момент времени. Если в выражении перейти к пределу, устремляя к нулю, то мы получим выражение для вектора скорости м.т. в момент времени t прохождения ее через т.М траектории.

Подставляя в (1.6) значения для радиус-вектора материальной точки (1.1) и выполнив почленное дифференцирование, получим:

(1.8)

Из сопоставления выражений (1.7) и (1.8) следует, что проекции скорости материальной точки на оси прямоугольной декартовой системы координат равны первым производным по времени от соответствующих координат точки:

(1.9)

Поэтому численное значение скорости:

(1.10)

Движение, при котором направление скорости материальной точки не изменяется, называется прямолинейным. Если численное значение мгновенной скорости точки остается во время движения неизменным, то такое движение называется равномерным.

Если же за произвольные равные промежутки времени точка проходит пути разной длины, то численное значение ее мгновенной скорости с течением времени изменяется. Такое движение называют неравномерным.

В этом случае часто пользуются скалярной величиной , называемой средней путевой скоростью неравномерного движения на данном участкетраектории. Она равна численному значению скорости такого равномерного движения, при котором на прохождение путизатрачивается то же время, что и при заданном неравномерном движении:

(1.11)

Т.к. только в случае прямолинейного движения с неизменной по направлению скоростью, то в общем случае:

.