Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Восточно-Европейская платформа.docx
Скачиваний:
84
Добавлен:
20.05.2015
Размер:
1.69 Mб
Скачать

Особенности структуры и глубинного строения Восточно-Европейской платформы

Структура и мощности различных комплексов в пределах платформы далеко не одинаковы, что является следствием движений отдельных блоков дорифейского фундамента, происходивших длительное время и с разной направленностью. Крупнейшие тектонические элементы плиты — антеклизы, синеклизы, впадины и прогибы — повсеместно осложнены структурами меньшего порядка: сводами, выступами, валами, флексурами, грабенами, куполами и другими, которые формировались либо в течение всего платформенного этапа развития,

Рис. 15. Схематический профиль по простиранию Днепровско-Донецкого прогиба (по В. К. Гавриш):

1 — осадочная толща; 2 — докембрийский фундамент; 3 — разломы; 4 — поверхность каменноугольных отложений

Рис. 16. Геологический профиль западной части Русской плиты (по В. Г. Петрову)

либо в его отдельные моменты. Поэтому часть структур выражена во всех горизонтах осадочного чехла, а часть — проявляется только в определенных толщах пород. Почти все структуры плиты разного масштаба получили собственные наименования.

О структурах нижнего этажа платформенного чехла (авлакогенах) говорилось уже достаточно, а их строение показано на рис. 10. Следует лишь подчеркнуть, что это не простые грабены, а чаще всего система отдельных частных грабенов и горстов, сливающаяся в протяженный прогиб, обладающий расчлененным днищем (рис. 15; 16). Рифейские авлакогены возникли над древними подвижными линейными зонами в фундаменте и многие из них продолжали жить на протяжении всего платформенного этапа развития (см. рис. 50). Следует подчеркнуть, что системы авлакогенов параллельны обрамляющим платформу геосинклиналям. Ряд авлакогенов, например Днепровско-Донецкий, обладает положительным гравитационным полем, свидетельствующим о подъеме поверхности М, что подтверждается ГСЗ. Другие — отрицательным, например Пачелмский. Антеклизы и синеклизы осложнены многочисленными, более мелкими структурами разных порядков. В первых широко развиты изометричные выступы фундамента — своды, например Токмовский, Татарский, Жигулевско-Пугачевский и другие на Волго-Уральской антеклизе, которые в свою очередь осложняются структурными "носами", валами,

Рис. 17. Профиль через Воронежскую антеклизу по линии Орел—Белгород (по А. И. Мушенко)

флексурами и т. д., возникшими над зонами разломов. Между сводами располагаются впадины, например Мелекесская, разделяющая Татарский и Токмовский своды. Воронежская и Белорусская антеклизы обладают более простым строением, чем Волго-Уральская, но обрамляются разломами, уступами и авлакогенами. Характер строения

Рис. 18. Схематические профили через валы: I — Окско-Цнинский (по Н. Т. Сазонову); II — Доно-Медведицкий (по А. И. Мушенко)

сводовой части и южного крыла Воронежской антеклизы показан на рис. 17. Одним из типичных тектонических элементов чехла являются валы. В одних случаях эти структуры обладают длиной в несколько сот километров и состоят из кулисообразно подставляющих друг друга пологих брахиантиклиналей (Вятский вал). В других — это асимметричные складки, связанные с флексурами (Окско-Цнинский вал) (рис. 18). В третьих — система сложно сочетающихся между собой брахискладок (Керенско-Чембарский, Жигулевский, Доно-Медведицкий валы), часто оборванных сбросами с одним крутым (до 20—25°) и другими пологими (до 1—2°) крыльями. Валы чаще всего возникают над краевыми сбросами рифейских авлакогенов, по которым происходили неоднократные подвижки и в фанерозойское время — Окско-Цнинский, Керенско-Чембарский, Вятский и другие.

Синеклизы Русской плиты также осложнены флексурными перегибами, уступами, выступами, седловинами, разделяющими отдельные наиболее прогнутые участки (рис. 19). Так, Латвийская седловина с Локновским выступом отделяет Балтийский прогиб от Московской синеклизы и соединяет Белорусскую антеклизу и Балтийский щит. Последняя Бобруйским выступом отделена от Припятского авлакогена, а он в свою очередь Черниговским выступом — от Днепровско-Донецкого и т. д. Флексурами и ступенями нарушены пониженные пологие склоны щитов Балтийского и Украинского, являющихся одновременно и крыльями синеклиз.

Рис. 19. Геологический профиль через центральную часть Московской синеклизы (по Ю. Т. Кузьменко, с упрощением). Штриховкой показана вулканическая брекчия. В центре — Среднерусский авлакоген, на поверхности выраженный Рыбинско-Сухонским валом

Сложную структуру имеет Прикаспийская впадина. Она характеризуется очень мощной (до 20—23 км) толщей осадков и резким, ступенчатым опусканием фундамента по ее краям, которое выражено в структуре чехла зоной Прикаспийских флексур и связанной с ней системой валов, характеризуемых гравитационными ступенями (рис. 20, 21, 22). В верхних горизонтах впадины ярко выражена соляная тектоника, обусловленная присутствием множества соляных куполов открытого и закрытого типов, сливающихся на глубине через перемычки в узкие гряды. Подсолевое ложе залегает на глубинах до 10 км. В надсолевой части закрытых куполов развиваются кольцевые и радиальные сбросы, образующие структуру "битой тарелки". Соляные купола

Рис. 21. Схема строения соляного купола Макат (по Н. П. Тимофеевой и Л. П. Юровой) и его геологический разрез (по Г. А. Айзенштадту):

1 — сенон-турон; 2 — альб-секоман; 3 — апт; 4 — неоком; 5 — юра; 6 — сбросы имеют различную форму и размеры, достигающие в плане 10000 км2 (Челкар, Санкебой и др.).

Такие же купола, но верхнедевонской соли широко развиты в Днепровско-Донецком и Припятском авлакогенах. Рост куполов происходил длительное время, что сказалось в уменьшении мощностей отложений в сводовых частях соляных структур.

Таким образом, чехол платформы характеризуется складчатостью, обусловленной движениями блоков фундамента по разломам в течение всего фанерозойского времени, и чередованием эпох некоторого общего растяжения и сжатия.

Изучение глубинного строения платформы методом ГСЗ было начато в 1956 г. С тех пор этими исследованиями были охвачены Украинский щит и Днепровско-Донецкий авлакоген, Прикаспийская впадина, Волго-Уральская антеклиза и ряд других районов. Одним из важнейших выводов применения ГСЗ явилось представление о неоднороднослоистом характере не только земной коры, но и верхней мантии в пределах Восточно-Европейской платформы.

Рис. 22. Схема строения прибортовой зоны Прикаспийской синеклизы в Волгоградском Поволжье (по В. К. Аксенову и др.). Вертикальной штриховкой показана кунгурская соль

Мощность земной коры на платформе по данным ГСЗ колеблется от 24 до 54 км, причем наибольшие мощности устанавливаются на

Рис. 23. Строение земной коры на Украинском щите (по В. Б. Соллогубу и др.):

1 — гранитно-метаморфический слой; 2 — гранулито-базитовый слой; 3 — верхняя мантия; 4 — разломы; AR — архейские массивы; PR — области раннепротерозойской складчатости

Рис. 24. Профили ГСЗ через Днепровско-Донецкую впадину по линиям:

а — Звенигородка—Новгород-Северский; б — Пирятин—Таллаевка; в — Наричанка—Богодухов; г — Близнецы—Шевченко (по В. Б. Соллогубу и др.): 1 — осадочный чехол; 2 — гранитно-метаморфический слой; 3 — гранулито-базитовый слой; 4 — поверхность М; 5 — глубинные разломы; 6 — разломы неглубокого заложения

Украинском щите и в Воронежской антеклизе, а минимальные, около 22—24 км, в Прикаспийской впадине и, возможно, также в центральных частях Московской синеклизы, где мощность коры не превышает 30 км. Во всех остальных районах, за исключением ряда авлакогенов, кора имеет мощность около 35—40 км: на Волго-Уральской антеклизе — 32—40 км, в пределах Причерноморского склона — 40 км, до

Рис. 25. Сейсмогеологический разрез через Донбасс по линии Ново-Азовск—Титовка (по М. И. Бородулину):

1 — отражающие границы; 2 — поверхность дорифейского фундамента; 3 — поверхность М; 4 — глубинные разломы; 5 — скорости продольных сейсмических волн, км/с

39 км на Балтийском щите, 40—45 км в Приуралье и т. д. В первом приближении земная кора подразделяется на гранитный и гранулитобазитовый "слои", однако мощности этих слоев и соотношение их с поверхностью М, как и с поверхностью К, в разных участках платформы далеко не одинаковы.

На Украинском щите, несмотря на максимальную в пределах платформы мощность коры (около 55 км), гранитный слой не превышает, по-видимому, 10 км, составляя в остальных местах, например в Белозерском массиве, всего около 5 км (рис. 23). Следовательно, большая часть мощности коры приходится на гранулито-базитовый слой. Похожая картина наблюдается и на Воронежской антеклизе, где максимальная мощность коры в краевых частях антеклизы равняется 50 км, а на гранулито-базитовый слой падает не менее 3/5 мощности, т. е.

Рис. 26. Глубинное строение земной коры в районе Пачелмского авлакогена (по Г. В. Голионко и др.). Цифры — скорости продольных сейсмических волн, км/с. Поверхность К повторяет рельеф фундамента около 30 км. Мощность этого слоя увеличивается к центру антеклизы за счет редуцирования гранитного слоя.

Днепровско-Донецкий авлакоген характеризуется значительным утончением коры за счет редукции гранулито-базитового слоя подъемом поверхности М в районе Харькова на 10 км. Эти соотношения ярче выражены в северо-западной части авлакогена, тогда как к юго-востоку мощности слоев становятся сначала одинаковыми, а в Донбассе гранитный слой почти в два раза мощнее гранулито-базитового (25—15 км) (рис. 24; 25).

Волго-Уральская антеклиза, обладая корой в среднем мощностью 35—40 км, имеет равные по мощности гранулито-базитовый и гранитный слои, но максимальная толщина коры наблюдается в районах сводовых поднятий (Токмовского и других), осложняющих антеклизу (рис. 26). В Прикаспийской впадине земная кора имеет мощность 22—30 км, а подошва платформенного чехла залегает на глубинах

Рис. 27. Сейсмогеологический профиль через Прикаспийскую синеклизу по линии Камышин—Актюбинск (по В. Л. Соколову, с изменениями):

1 — кайнозой, мезозой и верхняя пермь; 2 — соляные купола (соль кунгурская); 3 — подсолевые отложения; 4 — гранитно-метаморфический слой; 5 — промежуточный слой; 6 — гранулито-базитовый слой; 7 — поверхность М; 8 — разломы; 9 — скорости продольных волн, км/с

18—25 км (рис. 27). В центральных участках впадины, прогнутых наиболее глубоко, отсутствует геофизический гранитный слой земной коры, и платформенный чехол залегает на гранулито-базитовом слое, где скорости волн 7,0—7,2 км/с. Этим участкам отвечают Аралсорский и Хобдинский гравитационные максимумы. Сейсмические и другие данные позволяют предполагать, что в состав подсолевого комплекса платформенного чехла, местами мощностью до 15 км, входят отложения позднего рифея (?), ордовика, девона, карбона и перми, однако большая часть мощности всех отложений, выполняющих впадину, приходится все же на долю верхнего палеозоя и триаса. По мнению Р. Г. Гарецкого, В. С. Журавлева, Н. В. Неволина и других геологов, столь интенсивное погружение впадины в это время связано с геосинклинальным процессом в Уральской геосинклинали и в северных районах Скифской плиты (погребенные герциниды кряжа Карпинского). На Балтийском щите исследования методом ГСЗ были проведены на Кольском полуострове и в Карелии. В последнем районе мощность коры составляет 34—38 км, причем на долю гранитного слоя приходится всего лишь 10—15 км. Субмеридиональный профиль ГСЗ на Кольском полуострове показал, что мощность земной коры составляет 35—40 км в центре полуострова, но она резко утончается (до 20 км) в пределах Баренцева моря. Наиболее интересная особенность строения коры состоит в том, что почти вся она отвечает гранулито-базитовомуслою со скоростями более 6,6 км/с, а гранитный слой имеет мощность в первые километры и местами практически отсутствует.

В пределах Имандра-Варзугского синклинория, выполненного 10—13-километровой толщей вулканогенно-осадочных нижнепротерозойских образований, последние по данным ГСЗ залегают непосредственно на гранулито-базитовом слое. Бурящаяся в этом районе сверхглубокая Кольская скважина прошла к январю 1982 г. уже более 11 км, в том числе и предполагавшуюся границу Конрада. Однако никаких "базальтов" не было встречено и скважина все 11 км идет по кислым метаморфическим толщам. К наиболее сенсационным результатам этой выдающейся работы принадлежат факт разуплотнения пород с глубиной, увеличение их пористости и резкий скачок геотермического градиента на глубине свыше 3 км. Таким образом, результаты сверхглубокого бурения вносят существеннейшие коррективы в интерпретацию геофизических данных и заставляют по-новому трактовать содержание понятия "гранулито-базитовый" слой.