Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Колебания и волны.docx
Скачиваний:
116
Добавлен:
15.05.2015
Размер:
860.06 Кб
Скачать

84

Лабораторная работа № 2-К

«ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ФИЗИЧЕСКОГО МАЯТНИКА»

1. Введение

1.1. Среди механических движений важную роль играет колебательное движение, характеризующееся определённой периодичностью. Физическое описание колебаний реального тела – чрезвычайно сложная задача. Поэтому теория колебаний оперирует с моделями: пружинным, математическим, физическим, крутильным маятниками. В основе всех этих моделей лежит представление о линейном гармоническом осцилляторе.

1.2. В классической механике линейный гармонический осциллятор – это материальная точка или абсолютно твёрдое тело, совершающее одномерные гармонические колебания под действием упругой (или квазиупругой) силы.

1.3. В настоящей лабораторной работе изучаются колебания математического и физического маятников и определяются параметры последнего.

2. Основные понятия

2.1. Математическим маятником называют идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена точечная масса. Достаточно хорошим приближением служит небольшой тяжёлый шарик, подвешенный на длинной тонкой нити.

2.2. Отклонение маятника от положения равновесия определяется угловым смещением , образованным нитью с вертикалью (рис.1). При этом возникает момент силы тяжестиМ относительно оси, проходящей через точку О, равный по величине M = m g l sinφ ( m – масса маятника , l – его длина)

Вектор момента силы имеет такое направление, что стремится вернуть маятник в положение равновесия и поэтому при малых отклонениях, когда , аналогичен квазиупругой силе. На рис.1 он направлен от нас, перпендикулярно плоскости чертежа. Применим к математическому маятнику основное уравнение динамики вращательного движения, гдеJ – момент инерции маятника относительно упомянутой выше оси, – угловое ускорение,- сумма моментов внешних сил. Для проекций на ось вращения

. (1)

Рис.1

При малых углах и тогда получаем дифференциальное уравнение

, (2)

решением которого являются гармонические колебания

,

с круговой частотой и периодом соответственно

, (3)

которые зависят только от длины l маятника и ускорения свободного

падения g.

2.3. Физическим маятником называется твердое тело, способное совершать колебания вокруг некоторой оси, не проходящей через его центр масс. В положении равновесия центр масс С находится под точкой подвеса О на одной вертикали на расстоянии a (рис.2). При отклонении маятника от положения равновесия возникает момент силы, стремящийся вернуть его обратно.

Так же, как и для математического маятника,

. (4)

Здесь J – момент инерции маятника относительно оси, проходящей через точку О. При малых колебаниях уравнение (4) переходит в

, (5)

решением которого является , но теперь с круговой частотой

и периодом . (6)

Рис.2

2.4. При сравнении формул (3) и (6) видно, что математический маятник с длиной

(7)

будет иметь такой же период, как и физический. Величина называется приведённой длиной физического маятника.