Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
270
Добавлен:
15.05.2015
Размер:
3.77 Mб
Скачать

14. Цветовые явления в атмосфере

Сумерки сопровождаются красивыми, иногда очень эффектными изменениями окраски небесного свода в стороне Солнца. Эти изменения начинаются еще до захода и продолжаются после восхода Солнца. Они имеют довольно закономерный характер и носят название зари. Характерные цвета зари – пурпурный и желтый. Но интенсивность и разнообразие цветовых оттенков зари изменяются в широких пределах в зависимости от содержания аэрозольных примесей в воздухе. Разнообразны и тона освещения облаков в сумерках.

В части небосвода, противоположной солнцу, наблюдается противо-заря, также со сменой цветовых тонов, с преобладанием пурпурных и пурпурно-фиолетовых. После захода Солнца в этой части небосвода появляется тень Земли: все более растущий в высоту и в стороны серовато-голубой сегмент. Явления зари объясняются рассеянием света мельчайшими частицами атмосферных аэрозолей и дифракцией света на более крупных частицах.

Отдаленные предметы видны хуже, чем близкие, и не только потому, что уменьшаются их видимые размеры. Даже и очень большие предметы на том или ином расстоянии от наблюдателя становятся плохо различимыми вследствие мутности атмосферы, сквозь которую они видны.

Эта мутность обусловлена рассеянием света в атмосфере. Понятно, что она увеличивается при возрастании аэрозольных примесей в воздухе.

Для многих практических целей очень важно знать, на каком расстоянии перестают различаться очертания предметов за воздушной завесой. Расстояние, на котором в атмосфере перестают различаться очертания предметов, называется дальностью видимости, или просто видимостью. Дальность видимости чаще всего определяется на глаз по определенным, заранее выбранным объектам (темным на фоне неба), расстояние до которых известно. Имеется также и ряд фотометрических приборов для определения видимости.

В очень чистом воздухе, например арктического происхождения, дальность видимости может достигать сотен километров, так как ослабление света от предметов в таком воздухе происходит за счет рассеяния преимущественно на молекулах воздуха. В воздухе, содержащем много пыли или продуктов конденсации, дальность видимости может понижаться до нескольких километров и даже метров. Так, при слабом тумане дальность видимости составляет 500-1000 м, а при сильном тумане или сильной песчаной бурс может снижаться до десятков и даже нескольких метров.

15. Суммарная и отраженная радиации

Всю солнечную радиацию, приходящую к земной поверхности – прямую и рассеянную – называют суммарной радиацией. Таким образом, суммарная радиация:

Q = S sin(h) + D,

где S – энергетическая освещенность прямой радиацией; D – энергетическая освещенность рассеянной радиацией; h – высота стояния Солнца.

При безоблачном небе суммарная радиация имеет суточный ход с максимумом около полудня и годовой ход с максимумом летом. Частичная облачность, не закрывающая солнечный диск, увеличивает суммарную радиацию по сравнению с безоблачным небом; полная облачность, напротив, ее уменьшает. В среднем облачность уменьшает суммарную радиацию.

Поэтому летом приход суммарной радиации в часы до полудня в среднем больше, чем после полудня. По той же причине в первую половину года он больше, чем во вторую.

С.П. Хромов и А.М. Петросянц [2] приводят полуденные значения суммарной радиации в летние месяцы под Москвой при безоблачном небе: в среднем 0,78 кВт/м2, при Солнце и облаках – 0,80, при сплошной облачности – 0,26 кВт/м2.

Падая на земную поверхность, суммарная радиация в большей своей части поглощается в верхнем тонком слое почвы или в более толстом слое воды и переходит в тепло, а частично отражается.

Величина отражения солнечной радиации земной поверхностью зависит от характера этой поверхности. Отношение количества отраженной радиации к общему количеству радиации, падающей на данную поверхность, называется альбедо поверхности. Это отношение выражается в процентах.

Итак, из общего потока суммарной радиации (S sin(h) + D) от земной поверхности отражается часть его (S·sin(h) + D)А, где А – альбедо поверхности. Остальная часть суммарной радиации (S·sin(h) + D)(1 – А) поглощается земной поверхностью и идет на нагревание верхних слоев почвы и воды. Эту часть называют поглощенной радиацией.

Альбедо поверхности почвы меняется в пределах 10-30%; у влажного чернозема оно снижается до 5%, а у сухого светлого песка может повышаться до 40%. С возрастанием влажности почвы альбедо снижается. Альбедо растительного покрова – леса, луга, поля – составляет 10-25%. Альбедо поверхности свежевыпавшего снега – 80-90%, давно лежащего снега – около 50% и ниже.

Альбедо гладкой водной поверхности для прямой радиации меняется от нескольких процентов (если Солнце высоко) до 70% (если низко); оно зависит также от волнения. Для рассеянной радиации альбедо водных поверхностей равно 5-10%. В среднем альбедо поверхности Мирового океана составляет 5-20%. Альбедо верхней поверхности облаков – от нескольких процентов до 70-80% в зависимости от типа и мощности облачного покрова – в среднем 50-60% [2].

Приведенные цифры относятся к отражению солнечной радиации не только видимой, но и во всем ее спектре. Фотометрическими средствами измеряют альбедо только для видимой радиации, которое, конечно, может несколько отличаться от альбедо для всего потока радиации.

Преобладающая часть радиации, отраженной земной поверхностью и верхней поверхностью облаков, уходит за пределы атмосферы в мировое пространство. Также уходит в мировое пространство часть (около одной трети) рассеянной радиации.

Отношение уходящей в космос отраженной и рассеянной солнечной радиации к общему количеству солнечной радиации, поступающей к атмосфере, носит название планетарного альбедо Земли, или просто альбедо Земли.

В целом планетарное альбедо Земли оценивается в 31%. Основную часть планетарного альбедо Земли составляет отражение солнечной радиации облаками.

Часть прямой и отраженной радиации участвует в процессе фотосинтеза растений, поэтому ее называют фотосинтетически активной радиацией (ФАР). ФАР – часть коротковолновой радиации (от 380 до 710 нм), наиболее активная в отношении фотосинтеза и продукционного процесса растений, представлена как прямой, так и рассеянной радиацией.

Растения способны потреблять прямую солнечную радиацию и отраженную от небесных и земных объектов в области длин волн от 380 до 710 нм. Поток фотосинтетически активной радиации составляет примерно половину солнечного потока, т.е. половину суммарной радиации, причем практически вне зависимости от метеоусловий и местоположения. Хотя, если для условий Европы характерно именно значение 0,5, то для условий Израиля оно несколько больше (около 0,52).

Однако нельзя сказать, что растения одинаково используют ФАР на протяжении своей жизни и в различных условиях. Эффективность использования ФАР различна, поэтому были предложены показатели «коэффициент использования ФАР», который отражает эффективность использования ФАР и «КПД фитоценозов». КПД фитоценозов характеризует фотосинтетическую активность растительного покрова.

Этот параметр нашел наиболее широкое применение у лесоводов для оценки лесных фитоценозов. Необходимо подчеркнуть, что растения сами способны формировать ФАР в растительном покрове. Это достигается благодаря расположению листьев по направлению к солнечным лучам, поворотам листьев, распределением листьев разного размера и угла наклона на разных уровнях фитоценозов, т.е. с помощью так называемой архитектуры растительного покрова.

В растительном покрове солнечные лучи многократно преломляются, отражаются от листовой поверхности, тем самым формируя свой внутренний радиационный режим.

Рассеянная внутри растительного покрова радиация имеет такое же фотосинтетическое значение, как и поступающая на поверхность растительного покрова прямая и рассеянная.