Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

P.K.Townsend - Black Holes

.pdf
Скачиваний:
20
Добавлен:
07.05.2013
Размер:
769.18 Кб
Скачать

We can choose in such a way that all points at 1 in the original metric are at nite a ne parameter in the new metric. For this to happen we must choose s.t.

(~r; t) ! 0 as j~rj ! 1 and/or jtj ! 1

(2.151)

In this case `in nity' can be identi ed as those points (~r; t) for which (~r; t) = 0. These points are not part of the original spacetime but they can be added to it to yield a conformal compacti cation of the spacetime.

Example 1

Minkowski space

ds2 = dt2 + dr2 + r2d 2

 

 

 

 

 

 

 

 

 

 

 

(2.152)

Let

 

 

 

!

 

 

 

 

 

 

 

 

 

 

 

 

 

v

=

t + r

 

 

 

 

 

4

 

 

 

 

 

u

=

t r

 

ds2 =

 

du dv +

(u v)2

d 2

 

 

 

(2.153)

Now set

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~

 

 

~

 

 

~

 

~

 

u

=

tan U

=2 < U < =2

with V

U

(2.154)

v

=

tan V~

 

=2 < V~ < =2

since r 0

 

 

In these coordinates,

 

 

 

 

 

 

 

V~ U~ d 2i

 

ds2 = 2 cos U~ cos V~ 2 h 4dU~ dV~ + sin2

(2.155)

To approach

 

in this metric we must take

 

~

 

 

 

 

~

 

 

 

U

 

! =2 or V

 

 

choosing

 

1

 

 

 

 

 

 

 

! =2, so by

 

 

 

~

~

 

 

 

 

 

 

 

 

 

 

 

(2.156)

= 2 cos U cos V

 

 

 

 

 

 

 

 

 

 

 

 

we bring these points to nite a ne parameter in the new metric

 

 

 

 

 

 

 

 

 

2

= ds

2

~ ~

2 ~

~

d

2

(2.157)

ds~

 

= 4dUdV + sin

V

U

 

41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~

 

~

 

 

 

 

 

 

 

 

 

We can now add the `points at in nity'. Taking the restriction V U into

 

 

 

 

 

 

 

account, these are

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~

= =2

 

 

 

 

! 1

 

 

 

r ! 1

 

 

 

 

 

 

 

 

 

 

U

 

u

 

,

 

 

 

spatial

1

, i0

 

V~

=

=2

, v

 

! 1

 

 

t nite

 

 

 

 

 

 

 

~

=

=2

 

 

u

 

! 1

 

 

t ! 1

 

 

past and future

U

 

 

 

 

 

 

 

V~

=

 

 

 

, v

 

! 1

,

 

r nite

 

temporal

1

, i

=2

 

 

 

 

 

 

U~

=

 

=2

 

 

 

u

 

 

 

 

 

 

r ! 1

 

=

past null

 

 

j j

6

 

 

 

 

! 1

 

< r + t nite

=

 

 

 

 

 

 

V~

=

 

 

,

 

 

 

,

8

 

t

! 1

 

9

 

 

 

 

 

 

1

=2

 

 

v nite

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:

 

 

 

 

 

;

 

 

 

 

 

 

 

 

j V~j

= =2

 

,

 

v

! 1

 

,

8

 

r

1

 

 

9

=

+

 

 

 

 

 

 

U~

=

=2

 

 

< r

!t nite

=

 

 

 

 

 

 

 

 

 

 

u nite

 

 

 

 

! 1

 

 

 

future null

1

 

6

 

 

 

 

 

 

 

 

 

 

:

 

t

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Minkowski spacetime is conformally embedded in the new spacetime with metric ds~2 with boundary at = 0.

Introducing the new time and space coordinates ; by

~

~

~

~

(2.158)

 

= V + U;

= V

U

we have

 

 

 

 

 

 

 

 

 

 

ds~2

=

ds2 = d 2 + d 2 + sin2 d 2

(2.159)

 

 

 

 

 

 

 

=

cos + cos

 

 

 

 

 

 

 

is an angular variable which must be identi ed modulo 2 , + 2 . If no other restriction is placed on the ranges of and , then this metric ds~2 is that of the Einstein Static Universe, of topology R (time) S3 (space).

The 2-spheres of constant 6= 0; have radius jsin j (the points = 0; are the poles of a 3-sphere). If we represent each 2-sphere of constant as a point the E.S.U. can be drawn as a cylinder.

42

.

.

 

 

.

.

. . . . . .

.

.

 

 

 

.

 

 

 

.

 

.

 

 

 

 

 

.

 

 

 

 

 

 

 

0 .

 

 

 

 

 

 

 

.

....

.

But compacti ed Minkowski spacetime is conformal to the triangular region

; 0

(2.160)

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

.........

 

 

 

 

 

 

 

 

 

 

 

 

 

................ ..... ....... ......

+ = ,

 

 

 

 

 

 

..

......

..

 

 

 

 

 

 

....

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~

=

+

 

 

....

 

 

 

 

 

 

 

 

.

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V = =2;

 

 

..

 

 

 

...

...

.....

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

... .... . . .

 

. .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

....

 

 

 

...

....

 

 

. .

 

 

 

 

 

 

 

 

 

 

 

.

. .

 

.

..

 

 

 

 

 

.

..

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

..

 

 

 

 

..

. ..

.........

 

 

 

 

 

 

 

 

 

 

.. .

 

 

 

 

..

 

 

 

 

..

 

 

 

..

 

 

 

 

 

.

 

 

 

 

 

0

...

 

 

 

....

 

 

 

....

 

 

 

....

 

 

 

....

..

 

....

........

 

 

 

 

 

....

 

...

 

 

 

 

 

 

 

...

 

 

...

....

....

 

 

 

 

 

 

 

 

 

..

 

 

 

 

..

...

...

 

 

 

..

 

 

..

 

 

 

 

 

 

 

..

 

 

 

 

 

.

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

.

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

....

 

 

 

 

....

 

 

 

 

 

.

 

 

 

 

....

 

....

 

 

 

 

 

 

 

 

 

 

 

..

.

 

 

 

 

..

 

 

..

.

.....

 

 

 

 

..

 

..

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

.

 

 

...

 

 

 

 

.

 

..

 

 

 

 

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

..

 

 

 

 

..

 

 

 

 

... ....

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

.....

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

..

 

 

 

 

 

 

 

. .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

........

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

= ,

 

 

 

.......

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

........

.... ....

.

..............

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U~ = =2; =

Flatten the cylinder to get the Carter-Penrose diagram of Minkowski spacetime.

43

 

 

 

 

.i+

 

 

 

 

..

.

 

 

 

 

. .

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

.

 

~

 

 

 

.

 

 

 

 

.

 

U

 

... .

 

.

 

 

 

 

.

 

 

 

...

.

.

 

 

 

 

..

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

.

 

 

.

.........

 

...

 

 

. .

 

 

 

 

..

 

r = 0

 

 

 

.

 

 

 

 

.

 

.

.

.

 

 

 

 

.

..

....... ..... ..timelike geodesic

 

 

 

...

 

 

 

 

 

 

 

..

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

. . .....

 

 

 

 

 

~

... .

 

 

 

 

 

. V

... .

 

 

 

 

 

.

..

.

 

 

 

 

. .

 

.

 

 

 

.

 

 

 

 

 

 

. .

.. .

.. =+

.

. . ................ t = constant

...... hypersurface

...... .. i0

............... .... ............... radial null

=

geodesic

 

i

Each point represents a 2-sphere, except rays travel at 450 from = through r = 0 hypersurfaces].

points on r = 0 and i0; i . Light and then out to =+. [= are null

Spatial sections of the compacti ed spacetime are topologically S3 because of the addition of the point i0. Thus, they are not only compact, but also have no boundary. This is not true of the whole spacetime. Asymptotically it is possible to identify points on the boundary of compacti ed spacetime to obtain a compact manifold without boundary (the group U(2); see Question I.6). More generally, this is not possible because i are singular points that cannot be added (see Example 3: Kruskal).

Example 2: Rindler Spacetime

 

ds2 = dU0 dV 0

 

 

(2.161)

Let

 

 

 

 

 

U0

=

tan U~

 

=2 < U~ < =2

(2.162)

V 0

=

tan V~

=2 < V~ < =2

 

44

Then

cos U~ cos V~ 2 dU~ dV~

 

 

 

 

 

 

ds2 =

 

 

 

 

 

(2.163)

 

 

 

 

 

 

 

 

 

=

2ds~2

= cos U~ cos V~

 

 

 

 

 

(2.164)

 

 

 

2

~

~

 

 

i.e. conformally compacti ed spacetime with metric ds~

 

= dU dV is same

 

 

 

 

 

~ ~

 

 

 

as before but with the above nite ranges for coordinates U; V .

 

 

 

The points at in nity are those for which = 0,

 

 

= =2,

= =2.

U~

 

V~

 

 

 

 

 

 

 

 

 

 

..

.. ..

..

.

..

(i0)L.. .. .. ...

..

.

..

.

..

.

...................

.............. .. . .. .. ..

orbit of

K = @=@T

i+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.... X = 0

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

. ..

 

 

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

 

 

 

 

. .

 

 

 

 

 

 

 

 

..

....

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. . . ............

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.... ... .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.. .

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

x = 0

 

 

.

 

 

.

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

.

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

.

 

 

 

..=..

 

 

 

 

 

 

 

 

 

........

 

 

 

 

 

 

.

 

 

 

 

 

 

 

..

 

 

 

 

 

...

.....

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

.

.....

 

..

 

 

 

..........

 

 

 

 

 

 

 

 

 

 

 

 

 

..

 

 

.

 

 

.

..

 

 

 

 

 

........

.

 

 

 

.

 

....

 

. Region covered by

.

 

 

 

 

 

. .

...

 

..

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

Rindler coordinates

.

 

 

 

 

 

 

 

 

 

 

 

 

 

.

..... . ...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

.

 

 

 

 

 

 

. .

 

 

 

 

 

 

 

 

 

 

....

 

 

 

 

. .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

... .

 

 

 

 

 

 

. .

 

 

 

 

 

 

 

..

 

 

 

 

 

 

.

 

 

 

 

 

 

 

.

 

 

 

 

 

 

.

 

 

 

 

 

 

... ..

 

 

 

 

. .

 

 

 

.....

.

..

 

 

 

 

 

 

 

 

 

.

 

 

 

. (i0)R

 

 

.. .

 

 

...

 

 

 

 

 

 

 

...

 

 

 

 

 

 

. .

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

.

...

 

 

 

 

 

 

 

 

 

 

....

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. ....

.....

 

 

 

 

 

 

.

 

. .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

.

 

 

. .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

.

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

.

 

 

 

.

..

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

orbit of k = @=@t

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

(Rindler time coordinate)

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

.. .. .

..

i

Similar to 4-dim Minkowski, but i0 is now two points.

 

Example 3: Kruskal Spacetime

 

 

 

 

M

 

 

 

ds2 = 1

2

du dv + r2d 2

in region I

(2.165)

 

r

Let

 

 

 

 

 

 

~

~

 

 

u = tan U

=2 < U < =2

(2.166)

 

v = tan V~

=2 < V~ < =2

 

45

Then

 

= 2 cos U~ cos V~

2

4

1

M

dUdV~ ~ + r2 cos2 U~ cos2 V~ d 2 (2.167)

ds2

 

2

 

r

Using the fact that

r =

1

(v

 

u) =

sin V~ U~

 

 

 

 

 

2

 

 

~

 

 

 

 

 

 

~

 

 

 

 

 

 

 

 

 

 

2 cos U cos V

 

 

we have

 

 

 

 

 

1

 

dUdV~ ~ +

 

 

 

 

 

 

 

 

 

M

r

 

2

ds~2 = 2ds2 = 4

2

 

 

r

r

 

(2.168)

sin

2

~

~

2

(2.169)

 

V

U

d

Kruskal is an example of an asymptotically at spacetime. It approaches the metric of compacti ed Minkowski spacetime as r ! 1 (with or withoutxing t) so i0, and = can be added as before. Near r = 2M we can introduce KS-type coordinates to pass through the horizon. In this way one can deduce that the CP diagram for the Kruskal spacetime is

singularity at r = 0

 

 

 

 

 

 

 

 

 

....

..r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

...

.

..

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

...

..

 

..

 

 

 

 

 

.

 

 

..

 

 

 

......

 

 

 

 

.

 

 

.....

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

II

 

....

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

 

IV

I

 

....

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

......

 

 

 

 

 

 

 

 

III

 

.

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

..

 

 

 

 

 

 

 

.

 

 

..

 

 

 

 

 

 

...

 

 

..

 

 

 

 

 

 

...

 

 

 

.

 

 

 

...

.

 

 

 

..

 

 

..

 

 

 

 

 

.

 

...

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

. .. .... ..... ......... .....

 

 

 

 

 

 

 

 

 

constant < 2M

i+

.......... =+

.

r = 2M

i0

...

.. ...........=............ r constant > 2M.

i

Note

46

(i)All r = constant hypersurfaces meet at i+ including the r = 0 hypersurface, which is singular, so i+ is a singular point. Similarly for i , so these points cannot be added.

(ii)We can adjust so that r = 0 is represented by a straight line.

In the case of a collapsing star, only that part of the CP diagram of Kruskal that is exterior to the star is relevant. The details of the interior region depend on the physics of the star. For pressure-free, spherical collapse, all parts of the star not initially at r = 0 reach the singularity at r = 0 simultaneously, so the CP diagram is

...

.

.

.

.

.

.

.

.

.

.

.

.

..............

. .

r = 0

.

 

.

 

.

 

.

 

.

 

.

 

.

 

i

.................... singularity at r = 0

..... ..... ............ i+

.

..

 

 

 

 

 

..

=+

 

 

 

.

...........

 

..... ..

r = 2M

 

 

 

.... .......

 

 

 

 

 

i0

 

..

 

=

 

 

 

.........

 

 

 

 

.

 

 

 

 

 

 

.

 

 

 

 

 

 

......

...............

surface of star

 

 

2.5Asymptopia

A spacetime (M; g) is asymptotically simple

if 9 a manifold (M; g~) with

boundary @M =

 

 

M s.t.

 

 

M and a continuous embedding f(M) : M ! f

 

= M

 

@M

f

(i) f(M) f

f

9

 

 

 

(ii) a

smooth function on M with > 0 on f(M) and g~ = 2f(g).

f

 

f

 

6f

(iii)= 0 but d = 0 on @M.

(iv)Every null geodesic in M acquires 2 endpoints on @M.

47

f

Example M = Minkowski, M = compacti ed Minkowski.

Condition (iv) excludes black hole spacetime. This motivates the following de nition:

A weakly asymptotically simple spacetime (M; g) is one for which 9 an

f open set U M that is isometric to an open neighborhood of @M,

f

where M is the `conformal compacti cation' of some asymptotically simple manifold.

Example

M its conformal `compacti cation'.

M = Kruskal, f

 

 

Note

 

 

 

M is not actually compact because @M excludes i

 

.

(i) f

f

 

(ii) M is not asymptotically simple because geodesics that enter r < 2M cannot end on =+.

Asymptotic atness

An asymptotically at spacetime is one that is both weakly asymptotically simple and is asymptotically empty in the sense that

(v) R = 0 in an open neighborhood of @M in M.

This excludes, for example, anti-de Sitter space. It also excludes spacetimes with long range electromagnetic elds that we don't wish to exclude so condition (v) requires modi cation to deal with electromagnetic elds.

Asymptotically at spacetimes have the same type of structure for = and i0 as Minkowski spacetime.

48

..........

=+

i0

=

.........

In particular they admit vectors that are asymptotic to the Killing vectors of Minkowski spacetime near i0, which allows a de nition of total mass, momentum and angular momentum on spacelike hypersurfaces. The asymptotic symmetries on = are much more complicated (the `BMS' group, which will not be discussed in this course).

2.6The Event Horizon

Assume spacetime M is weakly asymptotically at. De ne

J (U)

to be the causal past of a set of points U M and

J (U)

to be the topological closure of J , i.e. including limit points. De ne the boundary of J to be

J_ (U) =

 

(U) J (U)

 

J

(2.170)

The future event horizon of M is

 

H+ = J_ =+

(2.171)

i.e. the boundary of the closure of the causal past of =+.

49

....... .... .............
past endpoint of null geodesic generator of H+

Example Spacetime of a spherically-symmetric collapsing star

. .

.

.

i+

 

 

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

+

 

 

 

.

 

....

=

 

 

 

.

 

 

..........

 

.... ...

H

+

.

 

 

 

.. ..... ......

 

 

.

 

 

 

 

 

 

.

.

...... ........

... ...

. .

.

.

.

.

.

.

.

.

.

.

i

 

 

 

i0

 

 

 

.

 

 

 

.

.

 

 

 

.

 

 

=

.... .

.

 

.... .... ..

.....

 

 

..

..

 

.

 

..

..

 

 

 

 

 

..

 

 

 

.

.

 

 

..

 

 

 

.. continuation of radial

.

 

 

null geodesic from i+

Properties of the Future Event Horizon, H+

(i)i0 and = are contained in J (=+), so they are not part of H+ .

(ii)H+ is a null hypersurface.

(iii)No two points of H+ are timelike separated. For nearby points this

follows from (ii) but is also true globally. Suppose that and were two such points with 2 J ( ). The timelike curve between them could then be deformed to a nearby timelike curve between 0 and 0 with 0 2 J (=+) but 0 62J (=+)

.

.................. . . ......... 0

. . . .

0 . . .

 

timelike curve?

 

 

 

But 0 2 J ( ) 2 J (=+), so we have a contradiction. The timelike curve between and cannot exist.

50

Соседние файлы в предмете Физика