Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

P.K.Townsend - Black Holes

.pdf
Скачиваний:
20
Добавлен:
07.05.2013
Размер:
769.18 Кб
Скачать

Chapter 6

Black Hole Mechanics

6.1Geodesic Congruences

De nition A congruence is a family of curves such that precisely one curve of the family passes through each point. It is a geodesic congruence if the curves are geodesics.

The equations of a geodesic congruence may be written as x = x (y ; ) where the parameters y ; = 0; 1; 2 label the geodesic and is an a ne parameter on the geodesic, i.e.

t =

d

 

@x

 

 

 

=

 

@

(6.1)

d

@

is the tangent to the geodesics such that t Dt = 0.

Since the parameter

is a ne, t2 1 for timelike geodesics (while t2 0 for null geodesics). The vectors

 

d

 

 

@x

 

=

 

 

=

 

@

(6.2)

dy

 

@y

may be considered as a basis of `displacement' vectors across the congruence:

101

 

 

 

..

...

........ ..... .......

......

. .

 

 

 

 

 

.......

 

 

 

 

 

.

 

 

.

 

 

. neighboring geodesics

 

..

 

 

 

 

 

.

 

 

 

.

...

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

. ....... ..........

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

........ .....

...

 

 

 

 

 

 

. .. .

 

 

 

..

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

..

..

.... ....... ..... constant

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

. .

 

 

 

 

 

Note that t and commute (since we could choose coordinates x s.t. t = @=@ and = @=@y ), so

0 =

t @ @ t

(6.3)

=

t (@ + ) (@ t + t )

(6.4)

=

t D D t (by symmetry of connection)

(6.5)

or

 

 

 

 

 

 

 

 

t D = B

 

(6.6)

where

 

 

 

 

B = D t

(6.7)

measures the failure of the displacement vectors to be paralelly-transported along the geodesics, i.e. it measures geodesic deviation.

A geodesic nearby some ducial geodesic may now be speci ed by a displacement vector , but this speci cation is not unique because 0 = +at (a = constant) is a displacement vector to the same geodesic.

102

.

.

 

 

....

 

 

 

.....

....

 

t

. .......... .........

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ducial

..... ... ......... .

 

 

 

....... .......

 

 

 

 

...

.

.....

..

..

....

 

gedoesic

 

 

 

 

 

..

 

 

 

 

..

 

.

 

 

 

 

 

 

+ at

neighbouring geodesic

For timelike geodesics we can remove this ambiguity by requiring to be orthogonal to t, i.e.

t = 0

 

(6.8)

Strictly, speaking we can only make such a choice at a given value of , by choosing the origin of across the congruence. However

d

( t) =

(t D ) t (since t Dt = 0)

(6.9)

 

 

d

 

 

=

B t = ( D t ) t

(6.10)

 

 

=

1

@t2 = 0 ;

(6.11)

 

 

 

 

 

 

 

2

since t2 1 for timelike congruences, so if t is chosen to vanish at one value of it will do so for all .

For null congruences the condition t = 0 is not su cient to eliminate

the ambiguity in the choice of because

 

0 t =

( + at) t = t + at t

(6.12)

=

t

(6.13)

when t2 = 0, which means that 0 t = 0 whenever t = 0. The problem is that the 3-dim space of vectors orthogonal to t now includes t itself, so the displacement vectors orthogonal to t specify only a two-parameter family of geodesics. Displacement vectors to the other null geodesics in the congruence have a component in the direction of a vector n that is not

103

orthogonal to t. The choice of n is otherwise arbitrary (it is analogous to the choice of gauge in electrodynamics), but it is convenient to choose it such that

n2 = 0; n t = 1

(6.14)

e.g. if t is tangent to an outgoing radial null geodesic, then n is tangent to an ingoing one.

 

.

 

 

 

 

 

...

 

......outgoing radial

........ .......

 

 

null geodesic

t

 

 

 

 

 

 

 

 

 

t . n

 

 

 

 

 

 

 

 

1

 

 

 

 

t = p

 

 

(1; 1)

 

2

 

 

1

 

 

.

n = p

 

(1; 1)

 

 

 

2

 

r

Consistency of the choice of n requires that n2 and n t be independent of, which is satis ed if

t Dn = 0

(6.15)

i.e. we choose n to be parallely-transported along the geodesics.

Having made a choice of the vector n, we may now uniquely specify a twoparameter subset of geodesics of a null geodesic congruence by displacement vectors orthogonal to t by requiring them to also satisfy

n = 0

 

(6.16)

The vectors now span a two-dimensional subspace, T?, of the tangent space, that is orthogonal to both t and n, i.e. P = , where

P = + n t + t n

(6.17)

projects onto T?.

104

 

Proposition

P = ) t D

 

^

, where

 

 

 

= B

 

 

^

= P

 

 

 

 

 

 

 

 

(6.18)

 

B

B P

 

 

 

 

 

 

 

i.e. if 2 T? initially, it remains in this subspace.

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof

 

 

 

 

 

 

 

 

 

 

 

t D

=

t D (P )

(if P = )

 

(6.19)

 

 

=

P t D

(since t Dn = t Dt = 0)

(6.20)

 

 

=

P B

(by de nition)

 

(6.21)

 

 

=

P B P

(since P = )

(6.22)

 

 

=

^

 

 

:

 

 

 

 

(6.23)

 

 

B

 

 

 

 

 

^

 

 

 

 

 

 

 

 

 

 

 

 

 

B is e ectively a 2 2 matrix. We now decompose it into its algebraically

irreducible parts

 

 

 

 

 

 

 

 

 

 

^

1

 

 

 

 

 

 

 

B =

 

P

 

 

+ ^

 

+ !^

 

 

(6.24)

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

where

 

 

^

 

 

 

 

 

 

 

 

=

 

 

 

 

(trace)

 

expansion

 

 

B

 

 

 

 

^

 

 

^

=

^

 

 

 

 

1

(symmetric, traceless)

shear

 

 

B( )

2 P B

 

!^

 

^

 

 

 

 

 

 

(anti-symmetric)

twist

 

= B[ ]

 

 

 

Notation:

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

^

 

 

 

 

1

 

^

 

^

 

 

 

 

B( )

=

2

 

B

+ B

 

 

 

 

 

 

 

 

 

B^ B^

 

 

 

 

B^[ ]

=

 

 

 

 

 

 

2

 

 

 

 

Lemma

 

^

 

 

 

 

 

 

 

 

 

t[ B ] = t[ B ]

 

 

 

Proof

Using t Dt = 0 and t2 = 0, we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B^ = B + t n B + n B n t + B n

t

(6.25)

Hence result. ([

 

] indicates total anti-symmetrization on enclosed indices).

 

 

 

 

Proposition

The tangents t are normal to a family of null hypersurfaces i !^ = 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

105

Proof

If !^ = 0, then

 

0

=

^

(6.26)

t[ !^ ] t[ B ]

 

=

t[ B ] (by Lemma)

(6.27)

 

=

t[ D t ]

(6.28)

so t is normal to a family of hypersurfaces by Frobenius' theorem. (In this case we can take t = l).

Conversely, if t is normal to a family of null hypersurfaces, then Frobenius' theorem implies t[ D t ] = 0. Then, reversing the previous steps we

nd that,

 

0 = t[ !^ ] =

1

(t !^ + t !^ + t !^ )

(6.29)

 

3

 

 

Contract with n. Since n t = 1 and n!^ = !n^

= 0 (because !^ contains

the projection operator P ), we deduce that !^ = 0.

 

If !^ = 0 we have a family of null hypersurfaces. The family is parameterized by the displacement along n

 

 

.

 

 

 

 

 

 

 

 

.

...

..... ..... .......

....

..

 

 

...

.

..

 

 

 

 

 

 

 

 

 

....

 

 

 

...... .... ....... .

 

 

 

 

 

....

 

 

...

 

 

 

 

 

.

 

..

.

.

 

 

 

............

 

 

 

 

 

.

 

 

 

..

..

 

 

t

 

 

 

 

n

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

.

 

 

 

 

 

..

 

 

 

 

family of

null hypersurfaces

6.1.1Expansion and Shear

Two linearly independent vectors (1) and (2) orthogonal to n and t determine an area element of T?. The shear ^ determines the change of shape of this area element as increases. The magnitude of the area element de ned by (1) and (2) is

a = " t (1) (2)

 

 

 

 

 

 

(6.30)

Since t Dt = 0 and t Dn = 0, we have

 

 

 

 

 

 

da

 

 

 

 

(1)

(2)

(1)

(2)

(6.31)

 

d

= t @a = t Da = "

 

t n

t D

 

+

t D

 

 

 

106

=

"

 

t n

^

(1)

(2)

(1)

^

(2)

(6.32)

 

 

 

B

 

 

 

+

B

 

=

2"

 

h

^

 

(1)

(2)

 

 

 

i

 

 

 

t n B

[ ]

 

 

 

(6.33)

=

a

(see Question IV.2)

 

 

(6.34)

i.e. measures the rate of increase of the magnitude of the area element. If> 0 neighboring geodesics are diverging, if < 0 they are converging.

Raychaudhuri's equation for null geodesic congruences

 

d

=

t D B P

 

 

 

 

 

 

 

 

 

 

(6.35)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

=

 

 

 

 

 

 

 

(since t

Dt = 0 and t

Dn = 0)

(6.36)

 

P

t DB

 

 

 

 

 

 

 

=

P t D D t

 

 

 

 

 

 

 

 

 

 

(6.37)

 

 

 

 

 

=

P t D D t + P t [D ; D ] t

 

 

 

 

 

(6.38)

 

 

 

 

 

=

P

2D

(t Dt ) (D t ) (D t )3

+ P t R t

(6.39)

 

 

 

 

 

 

 

 

|

 

 

 

{z

 

 

}

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

P

 

 

 

 

 

 

R t

 

 

 

 

 

 

(6.40)

 

 

 

 

 

 

 

B

 

B

t

 

(using symmetries of R)

 

 

 

 

 

= P B P B + P B t n B + P B n t B t t R

 

 

 

 

 

=

 

 

^ ^

 

 

 

 

R

(using t Dt 0 and t

2

0)

(6.41)

 

 

 

 

 

B B t t

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

1

2 ^ ^ + !^ !^ R t t

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

(6.42)

 

 

d

2

 

 

 

 

 

This is Raychaudhuri's equation for null geodesic congruences.

Some consequences of Raychaudhuri's equation for null hypersurfaces

Proposition The expansion of the null geodesic generator of a null hypersurface, N, obeys the di erential inequality

d

 

1

2

(6.43)

 

 

 

d

2

provided the spacetime metric solves Einstein's equations G = 8 GT and T satis es the weak energy condition.

107

Proof ^2 0 because the metric in the orthogonal subspace T? (to l and n) is positive de nite. !^2 0 also, but this comes in with wrong sign, however !^ = 0 for a hypersurface. Thus Raychaudhuri's equation implies

d

 

 

1

 

2

R l

 

 

 

 

 

 

 

 

 

 

 

l

 

 

 

 

(6.44)

d

2

 

 

 

 

 

 

 

 

 

1

 

2

8gT l

 

 

 

 

 

 

 

 

 

l

 

(by Einstein's eq.)

(6.45)

 

 

2

 

 

 

 

 

 

1

 

2

by weak energy condition

(6.46)

 

 

2

 

Corollary If = 0 < 0 at some point p on a null generator of a null hypersurface, then ! 1 along within an a ne length 2= j 0j.

Proof Let be the a ne parameter, with = 0 at p. Now

 

d

 

 

1

 

d

1

>

1

 

 

1

1

 

 

 

 

 

 

2 ,

 

 

 

 

 

 

)

 

+ constant (6.47)

 

d

2

 

d

2

2

where, since = 0 at = 0, the constant cannot exceed 0 1. Thus

1

 

1

+ 1

 

 

 

 

 

 

 

0

 

 

 

 

(6.48)

2

)

 

 

1 + 1

 

 

 

 

 

 

 

0

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

If 0 < 0 the right-hand-side ! 1 when = 2= j 0j, so ! 1 within that a ne length.

Interpretation When < 0 neighboring geodesics are converging. The attractive nature of gravitation (weak energy condition) then implies that they must continue to converge to a focus or a caustic.

Proposition

^

If N is a Killing horizon then B = 0 and

 

d

= 0

(6.49)

 

 

 

 

d

 

 

 

 

 

Proof Let be the Killing vector s.t. = fl (l Dl = 0) on N for some non-zero function f. Then

^

^

(since !^ = 0 for family of hypersurface)

(6.50)

B

= B( )

108

If T

=

P

B( )P P D( l )P

(6.51)

=

0

 

 

 

 

=

P

 

@( f 1

)P (since D( ) = 0)

(6.52)

 

(since P = P = 0)

(6.53)

In particular = 0, everywhere on N, so d =d = 0.

 

Corollary For Killing horizon N of

 

 

R jN = 0

 

(6.54)

^

Proof Using d =d = 0 and B = 0 in Raychaudhuri's equation.

6.2The Laws of Black Hole Mechanics

Previously we showed that 2 is constant on a bifurcate Killing horizon. The proof fails if we have only part of a Killing horizon, without the bifurcation 2-sphere, as happens in gravitational collapse. In this case we need the:

6.2.1Zeroth law

obeys the dominant energy condition then the surface gravity is constant on the future event horizon.

Proof Let be the Killing vector normal to H+ (here we use the theorem that H+ is a Killing horizon). Then since R = 0 and 2 = 0 on H+, Einstein's equations imply

0 = T jH+ J jH+

(6.55)

i.e. J = ( T ) @ is tangent to H+ . It follows that J can be expanded on a basis of tangent vectors to H+

J = a + b1 (1) + b2 (2) on H+

(6.56)

But since (i) = 0 this is spacelike or null (when b1 = b2 = 0), whereas it must be timelike or null by the dominant energy condition. Thus, dominant

energy ) J / and hence that

 

 

 

 

 

 

 

 

 

 

 

 

0 =

[ J ]

H+

 

= [ T ] H+

(6.57)

 

[ R ]

 

 

 

 

H+

 

 

=

 

 

 

 

(by Einstein's eq.)

(6.58)

=

 

 

@

 

 

 

 

(by result of Question IV.3)

(6.59)

 

 

[

 

]

 

 

H

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

(6.60)

109

)@ / ) t @ = 0 for any tangent vector t to H+

) is constant on H+.

6.2.2Smarr's Formula

Let be a spacelike hypersurface in a stationary exterior black hole spacetime with an inner boundary, H, on the future event horizon and another boundary at i0.

........... H

................ .

..................

.... ..... .......

. .. .. ..

...................

... .. . ..

...... ... ...

...............

............

........... .

........ .

...... . . .

...... . .

.. .

.

.

. i+

...

H

+

.......................

 

 

...

. .. i0

.

.

.

.

.

.

.

The surface H is a 2-sphere that can be considered as the `boundary' of the black hole.

Applying Gauss' law to the Komar integral for J we have

 

J =

1

 

Z dS D D m +

1

IH dS D m

(6.61)

 

 

 

8 G

16 G

=

1

 

Z dS R m + JH

by Killing vector Lemma

(6.62)

 

8 G

where JH is the integral over H. Using Einstein's equation,

 

 

1

 

 

 

 

J = Z dS T m m

 

T m + JH

(6.63)

2

In the absence of matter other than an electromagnetic eld, we have T = T (F ), the stress tensor of the electromagnetic eld. Since g T (F ) = T (F ) = 0 we have

 

 

J = Z dS T (F )m + JH

(6.64)

for an isolated black hole (i.e. T = T (F )).

110

Соседние файлы в предмете Физика