Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИиИКТ Лекция 8 Архитектура ЭВМ.doc
Скачиваний:
10
Добавлен:
10.05.2015
Размер:
141.31 Кб
Скачать

3.3. Материнская плата пк

Материнская плата, является основным устройством ПК, обеспечивающим подключение и взаимодействие всех других устройств друг с другом. Именно материнская плата обеспечивает реализацию аппаратных интерфейсов. В составе материнской платы можно выделить следующие элементы.

  1. Микропроцессорный набор (чипсет, chipset);

  2. Энергонезависимую память, называемую также ПЗУ (постоянное запоминающее устройство) или ROM (Read Only Memory);

  3. Интегрированные устройства;

  4. Генератор тактовой частоты;

  5. Системные шины;

  6. Слоты (разъемы) для подключения устройств;

  7. Автономный источник питания.

Рассмотрим назначение этих элементов.

Чипсет – это набор микросхем, из которых собственно и построена материнская плата. Именно чипсет реализует необходимые аппаратные интерфейсы, на основе которых работает компьютер. Все остальные устройства материнской платы можно считать дополнением к чипсету. Однако необходимо иметь в виду, что на основе одного и того же чипсета разными производителями разрабатываются различные материнские платы, поэтому типов материнских плат значительно больше, чем базовых чипсетов.

Энергонезависимая память является необходимым дополнением к чипсету. Она содержит набор базовых программ (BIOS – Basic Input and Output System), поддерживающих аппаратные интерфейсы, выполняющих проверку работоспособности компьютера при его включении, загружающих операционную систему и т.д. Основное содержимое энергонезависимой памяти записывается при изготовлении материнской платы и не изменяется в процессе эксплуатации компьютера, однако часть этого содержимого (настройки BIOS) можно изменить через специальную программу BIOS Setup, которая также записана в энергонезависимую память. Современные материнские платы поддерживают и процедуру перезаписи всего содержимого энергонезависимой памяти (перезапись BIOS, прошивка BIOS), но это очень критичная процедура – при неудаче компьютер окажется полностью неработоспособным.

Кроме чипсета в состав материнской платы могут входить микросхемы других устройств, выполняющих функции, не относящиеся к функциям материнской платы. Например, в материнскую плату может быть встроена звуковая карта, сетевая карта или видеокарта. Такие устройства называются интегрированными в материнскую плату. Наличие интегрированной видеокарты означает, например, что монитор можно подключать непосредственно к соответствующему разъему материнской платы.

Генератор тактовой частоты также является необходимым элементом материнской платы, задающим частоту прохождения всех электрических импульсов (частоту системной шины) и, следовательно – скорость обмена данными между всеми устройствами компьютера. Если частота системной шины равна , то минимальное временное расстояние между импульсами. Если от одного устройства передается другому одновременноn бит, то максимальная (пиковая) скорость передачи денных между этими устройствами бит/с. Это же относится и к передаче данных внутри устройств, за исключением процессора – в нем внутренняя скорость передачи данных гораздо выше. В процессоре действует другая, более высокая тактовая частота, где Кп – коэффициент умножения частоты. Величина Kп находится в диапазоне от 2 до 21. Поэтому -тактовая частота процессора - может значительно превышать тактовую частоту системной шины .

Системные шины – это системы проводников, обеспечивающие прохождение электрических сигналов между устройствами. Таким образом, устройства обмениваются данными друг с другом именно через системные шины. Микросхемы чипсета связаны друг с другом и со слотами устройств через шины, выполненные в виде электрической разводки платы. Основной характеристикой шины является разрядность (ширина шины) – количество бит, которые могут передаваться по шине одновременно. Тип и разрядность шины определяются аппаратным интерфейсом, который эта шина должна поддерживать, поэтому, говоря о разрядности шины, имеют в виду именно тип интерфейса.

Для подключения различных устройств к материнской плате используются слоты – специальные разъемы, соединенные через соответствующие шины с микросхемами чипсета. Каждый слот предназначен для передачи данных в соответствии с определенным интерфейсом, поэтому слоты обозначаются теми же аббревиатурами, что и интерфейсы, например, PCI, AGP, USB.

Последний элемент списка автономный источник питания представляет собой стандартный маленький аккумулятор, предназначенный для поддержания работы энергонезависимой памяти и генератора тактовой частоты в то время, когда компьютер выключен. При выходе автономного источника питания из строя происходит сбой системных часов и настроек BIOS, что может привести к сбоям в работе программ. Вышедший из строя автономный источник питания, как правило, несложно заменить.

3.4. Центральный процессор (CPU)

Центральный процессор (ЦП) — это устройство, которое выполняет обработку информации в соответствии с выполняемой компьютером программой, находящейся в оперативной памяти и состоящей из отдельных команд, понятных для процессора. В каждой команде содержатся сведения о том, откуда взять исходные данные, какую операцию над ними выполнять и куда поместить результат.

Процессор выполняет следующие функции:

  • чтение команд из оперативной памяти и их дешифрация;

  • чтение данных из оперативной памяти и портов ввода-вывода;

  • запись данных в оперативную память или их пересылка в порты ввода-вывода;

• прием и обработка запросов и команд от адаптеров внешних устройств;

• выработка управляющих сигналов для всех прочих устройств компьютера.

Функционально процессор состоит из двух компонентов — операционной и интерфейсной частей. Операционная часть включает устройство управления, арифметико-логическое устройство и процессорную память (регистры общего назначения — РОН). Интерфейсная часть включает микросхемы управления шиной и портами, а также адресный и командный регистры.

Устройство управления является наиболее сложной частью процессора. Оно вырабатывает сигналы, которые управляют всеми устройствами компьютера, и процессором в частности. Большинство операций в процессоре выполняется параллельно, а синхронизируются они с помощью тактовых импульсов, вырабатываемых генератором тактовых импульсов, частота которых — одна из важнейших характеристик процессора.

Устройство управления выполняет следующие функции:

  • выбирает из адресного регистра адрес в ОЗУ очередной выполняемой команды;

  • выбирает из ОЗУ очередную команду;

  • с помощью дешифратора операций анализирует код команды и идентифицирует выполняемую ею операцию и ее признаки;

  • считывает соответствующую выбранной операции микропрограмму процессора, задающую последовательность управляющих сигналов, которые будут задавать и синхронизировать работу по выполнению данной операции;

•считывает адреса в ОЗУ операндов операции и в случае необходимости переписывает данные из ОЗУ в регистры общего назначения;

  • выполняет операцию;

  • записывает результаты операции обратно в ОЗУ;

  • формирует адрес следующей команды.

Арифметико-логическое устройство (АЛУ) предназначено для выполнения арифметических и логических операций. Операнды операции перед этим должны быть размещены в регистрах общего назначения. Результат также помещается в регистр общего назначения. Само АЛУ представляет собой микросхему, на вход которой подаются операнды операции, а на выходе получается результат. Обычно для повышения общего быстродействия процессор может выполнять сложение и умножение только целых чисел, а для сложения и умножения чисел с плавающей точкой используются специальные микропрограммы. Регистры общего назначения используются для хранения начальных, конечных и промежуточных данных при работе процессора.

Для повышения эффективности работы в современных процессорах используется встроенная быстродействующая память – кэш-память, выполняющая функцию буфера между оперативной памятью и ядром процессора, в котором происходит выполнение команд. Данные из оперативной памяти сначала попадают в кэш-память процессора и только затем подвергаются дальнейшей обработке. При этом реализуется пакетный способ передачи данных – данные из оперативной памяти в кэш-память передаются сразу большим блоком (пакетом).

Производительность процессора зависит в первую очередь от его тактовой частоты , определяющей количество элементарных операций совершаемых процессором в единицу времени. Современные ПК характеризуются значениямиот 2 ГГц до 4 ГГц. Использование более высоких тактовых частот связано со значительными техническими трудностями, главными из которых являются проявление волновых свойств электрических импульсов на высоких частотах (что приводит к искажениям сигналов) и увеличение тепловыделения с ростом частоты (что приводит перегреву микросхем или к необходимости делать сложную и громоздкую систему охлаждения). Поэтому в настоящее время разработчики процессоров стремятся увеличить производительность процессоров, не увеличивая существенно тактовую частоту.

Производительность процессора зависит также от числа элементарных операций, выполняемых процессором одновременно (за один такт). В этом случае говорят, что операции выполняются параллельно и что процессор поддерживает параллельные вычисления. Рассмотрим основные способы организации параллельных вычислений внутри процессора.

1. Конвейерная обработка данных. Применяется почти во всех современных процессорах. В основу конвейерной обработки положен тот факт, что тактовые (т.е. выполняющиеся за один такт частоты процессора) элементарные операции, на которые разбивается каждая команда, выполняются разными независимыми блоками процессора. Э ти операции могли бы выполняться одновременно, но для одной команды это невозможно – каждая следующая операция использует результат предыдущей. Зато одновременные вычисления можно организовать для группы однородных независимых между собой команд. Пусть, например, процессору нужно выполнить последовательность из большого количества независимых однотипных команд. Для упрощения рассуждений будем считать, что процессор состоит из n блоков, а каждая команда состоит из последовательности n тактовых операций, причем, i-ю операцию выполняет i-й блок. После того, как 1-й блок выполнит 1-ю операцию 1-й команды (за 1-й такт), он освободится и сможет сразу выполнить 1-ю операцию 2-й команды. Одновременно с ним 2-й блок будет выполнять 2-ю операцию 1-й команды. Все это произойдет за 2-й такт. За 3-й такт 1-й блок выполнит 1-ю операцию 3-й команды, 2-й блок – 2-ю операцию 2-й команды, а 3-й блок – 3-ю операцию 1-й команды и т.д. Таким образом, каждая очередная команда процессора начинает выполняться не после окончания предыдущей команды (на это в нашем примере ушло бы n тактов), а через один такт после начала предыдущей. Эффективность конвейерной обработки зависит от конструкции процессора, объема кэш-памяти, и от специфики обрабатываемого программного кода.

Конвейерная обработка данных, позволяющая одновременно обрабатывать любые (не обязательно однотипные) команды называется суперскалярной.

2. Технология Hyperthreading (гипертрединг, многоконвейерная обработка данных) – дальнейшее развитие идеи конвейерной обработки. В этом случае процессор снабжается двойным набором регистров и воспринимается программным обеспечением как 2 параллельно работающих процессора. На самом деле процессор один и имеет одно ядро, в котором собственно происходят вычисления, но одновременно могут выполняться команды от 2-х различных задач. Наибольший эффект дает использование такого процессора, если компьютер работает в многозадачном режиме (это характерно для всех современных ПК), причем, одновременно выполняющиеся программы носят существенно разный характер. Например, если сложная вычислительная задача выполняется одновременно с компьютерной игрой, процессор с Hyperthreading даст максимальный выигрыш – обе программы почти не заметят друг друга. Если же одновременно работают две вычислительных задачи, то использование процессора с Hyperthreading практически не даст выигрыша по сравнению с таким же процессором без этой технологии.

3. Двухядерные процессоры. Это по сути дела выполнение двух процессоров в одной микросхеме, т.е. одновременное использование двух параллельно работающих процессоров. Использование двухядерного процессора повышает производительность работы в 2 раза практически для любого многозадачного режима работы компьютера. Не дает выигрыша такой процессор только в однозадачном режиме (например, в операционной системе DOS). Дальнейшее развитие этой технологии, по-видимому, приведет к созданию многоядерных процессоров для ПК.

Конструктивно любой процессор для ПК выполняется в виде микросхемы, которая вставляется в специальный (процессорный) слот материнской платы. Т.к. работа процессора сопровождается выделением большого количества тепла, для его охлаждения используются радиатор и специальный вентилятор, которые плотно прижимаются к корпусу процессора. В настоящее время есть несколько стандартов процессорных слотов, поэтому необходимо, чтобы процессор и материнская плата соответствовали друг другу.

Микросхема процессора состоит из огромного количества (сотен миллионов) мельчайших полупроводниковых элементов – транзисторов. Количество транзисторов в единице объема процессора называется степенью интеграции и определяет удельную производительность. Увеличение степени интеграции позволяет либо уменьшить объем при данной производительности, либо увеличить производительность при заданном объеме. Вместо степени интеграции часто пользуются другой величиной – средним размером одного транзистора. В этом случае говорится, что микросхема изготовлена по технологии … - и далее указывается средний размер транзистора в микронах (1мкм = 10-6 м) .или в нанометрах ( 1 нм = 10-9 м). Современные микросхемы изготавливаются по технологии 50 – 90 нм, что близко к технологическому пределу.