Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
zachet_2.docx
Скачиваний:
102
Добавлен:
02.05.2015
Размер:
288.8 Кб
Скачать

1.Звук- механические колебания и волны, распространяющиеся в упругих средах в виде продольных волн с частотой от 16 Гц до 20000 Гц и воспринимаемые человеческим ухом.Субъективные характеристики звука:1Тембр – «окраска» звука и определяется его гармоническим спектром. Различные акустические спектры соответствуют разному тембру, даже в том случае, когда основной тон у них одинаков. Тембр – качественная характеристика звука.

2Высота тона - субъективная оценка звукового сигнала, зависящая от частоты звука и его интенсивности. Чем больше частота, главным образом основного тона, тем ниже высота воспринимаемого звука.

3Громкость – также субъективная оценка, характеризующая уровень интенсивности.

Объективные характеристики: интенсивность-энергия проносимая звуковой волной за единицу времени через единицу площади.

Частота основного тона, кол-во обертонов.

2. Закон Вебера-Фехнера .

Громкость может быть оценена колич путем, те сравнение слух ощущ от 2 источников. В основе шкалы уровней громкости лежит важный психофиз закон Вебера-Фехнера: «Если увел раздраж в геометр прогрессии, то ощущ этого раздр увел в арифм прогрессии». Применительно к звуку это означает, что если интенс звука прин ряд послед значений аI0,а²I0, а³I0 и тд, то соовт им ощущ громкости звука, будет Е0, 2Е0, 3Е0 и тд. Матем запись закона В-Ф: Eб=klgI/ I0. В общем случае: Еф=10klgI/ I0. Условились считать, что на частоте 1 кГц шкалы интенс и громк совпадают и k=1. Для отл от шкалы интенс в шлаке громкости дБ назыв фонами. Громкость на др частотах можно изм сравнивая исслед звук с частотой 1кГц. Для этого с пом звук генератора (эл прибор генерирующий частоты колеб в Зв диапозоне), созд ν=1кГц. Затем изм интенс до тех пор, пока не возн слух ощущение ананлог ощущу громкости исслед звука. У звука частотой 1кГц в дБ дБ, измеряемая по прибору, равна громкости этого звука в фонах.

Кривые равной громкости. Зависимость громкости от частоты колебаний в системк звуковых измерений определяется на основании экспериментальных данных при помощи графиков, которые назыв К-р-г. Эти кривые характеризуют зависимость уровня интенсивности L от частоты υ звука при постоянном уровне громкости. Кривые называют изофонами. Нижняя изофона соответствует порогу слышимости (Е=0 фон), верхняя показывает предел чувствительности уха, когда слуховое ощущение переходит в ощущение боли (Е=120 фон)

3. Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине.

Метод измерения остроты слуха называют аудиометрией. При аудиометрии на аудиометре определяют порог слухового ощущения на разных частотах. Полученная кривая называется аудиограммой.

Аудиограмма - это график, отображающий состояние слуха человека.

По горизонтальной оси откладываются частоты (от 125 до 8000 Гц), а по вертикальной – пороги слышимости на соответствующих частотах, т.е. минимальные уровни звукового давления сигнала, при которых пациент слышит звук. При построении аудиограммы значения этих порогов измеряются специальным прибором – аудиометром.

По характеру данного графика можно судить о нарушениях органа слуха и методах и их коррекции.

Кривой порога слышимости называют график зависимости (минимальной) интенсивности звука, способного создать слуховое ощущение от частоты этого звука. Этот график приведен на рисунке в пункте 11. Как и кривые одинаковой громкости они имеют провал - минимум на частотах 1000 - 4000 Гц, что указывает на то, что наше ухо наиболее чувствительно именно к этим частотам.

4..Инфразвук, диапазон частот; эффекты и механизмы воздействия на организм человека

Инфразвук – акустические волны с частотой колебаний меньше 16Гц. Одним из самых важных свойств инфразвука является его способность распространяться на большие расстояния в различных средах.

Тк длина волны инфразвука больше, чем у слышимых звуков то инфразвук волны лучше дифрагируют и проникают в помещение, обходя преграды. Воздействие инфразвука происходит не только через слуховой анализатор, но и через механорецепторы кожи. Возникающие нервные импульсы нарушают согласованную работу различных отделов нервной системы, что может проявляться головокружением, болями в животе, тошнотой, затрудненным дыханием, чувством страха, при более интенсивном и продолжительном воздействии - кашлем, удушьем, нарушением психики. Поражающее действие инфразвука зависит от его силы и интенсивности. Инфразвуковые колебания небольшой интенсивности вызывают тошноту и звон в ушах, уменьшают остроту зрения. Нарушения, связанные с расстройствами зрительного аппарата проявляются отличием друг от друга картин, создаваемых левым и правым глазом, начинает «ломаться» горизонт. При длительном воздействии возникают проблемы с ориентацией в пространстве и в редких случаях слепота. Колебания средней интенсивности могут стать причиной расстройства пищеварения, сердечнососудистой, дыхательной систем, нарушения психики с самыми неожиданными последствиями. Инфразвук высокой интенсивности влекущий за собой резонанс , приводит к нарушению работы практически всех внутренних органов, к кровотечению из ушей и носа.

5..Ультразвук.

Ультразвуком называют продольные механические волны с частотами колебаний выше 20 КГц. В каждой среде скорость распространения, как звука, так и ультразвука – одинакова. Длина ультразвуковых волн в воздухе меньше чем 17 мМ

Источниками ультразвука являются специальные электромеханические излучатели. Один тип излучателей работают на основе явления магнитострикции, когда в переменном магнитном поле изменяются размеры некоторых тел.

Второй тип излучателей работает на основе пьезоэффекта, когда в переменном электрическом поле изменяются размеры некоторых тел. .

Особенности ультразвука.

Наиболее важной особенностью ультразвука является узость ультразвукового пучка, что позволяет воздействовать на какие-либо объекты локально. В неоднородных средах с мелкими включениями частиц, когда размеры включений примерно равны, но больше длины волны (L=λ) имеет место явление дифракции. Если размеры включений много больше длины волны имеет место прямолинейность распространения ультразвука. В этом случае можно получать ультразвуковые тени от таких включений, что используется при разл видах диагностики технической и медицинской. Важным теоретическим моментом при использовании ультразвука является прохождение ультразвука из одной среды в другую.

Частота при этом не изменяется. Скорость и длина волны при этом могут изменяться.

Проникновение УВ в другую среду характеризуется коэффициентом проникновения. Он определяется как отношение интенсивности волны попавшей во вторую среду к интенсивности, попавшей волны:

Этот коэффициент зависит от соотношения акустического импеданса двух сред.

Акустическим импедансом называют произведение плотности среды на скорость распространения волн в данной среде:

Коэф. Проникновения наибольший- близкий к 1, если акустический импеданс двух сред примерно равны.

Если импеданс второй среды больше, чем первой, то коэф. проникновения ничтожно мал. В однородных средах ультразвук поглощается по закону показательной функции.

Воздействие УВ на организм.

Три вида действия УВ:

- механическое

- тепловое

- химическое

Все три вида воздействия УВ на организм связано с явлением кавитации- это кратковременные возникновения микро полостей в местах разряжения волны.

УВ ускоряет протекание процессов диффузии и растворения, оказывает влияние на скорость химических реакций. УВ большой мощности вызывает гибель вирусов и бактерий. При малой мощности увеличивается проницаемость клеточных мембран и активизируются процессы обмена в тканях. Способность УВ волн оказывать механическое и тепловое действие на ткани лежит в основе УВ физиотерапии.

Локационные методы:

- эхоэнцефалография( определение опухолей и отека головного мозга)

-ультразвуковая кардиография ( измерение размеров сердца в динамике)

-ультразвуковая локация ( в офтальмологии).

Теменной метод основан на регистрации интенсивности УВ , прошедшего через исследуемый объект. В хирургии для резки костной ткани применяют УВ скальпель.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]