Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4.3.Метод.указан.по орг.С.Р.С..docx
Скачиваний:
26
Добавлен:
20.04.2015
Размер:
92.94 Кб
Скачать

Модуль 3. Электричество и магнетизм

Изучение электрических и магнитных явлений было в основном проведено в XIX в. Эти явления связаны с особой формой существования материи_ электромагнитным полем. Электромагнитные взаимодействия не только объясняют все электромагнитные явления, но и обеспечивают силы, обусловливающие существование вещества на атомном и молекулярном уровнях как единого целого. Важность изучения теории электромагнитного поля связана с тем, что она включает всю оптику, так как свет представляет собой электромагнитное излучение. Основой теории электромагнитного поля является теория Максвелла. Уравнения Максвелла установили тесную связь между электрическим и магнитными явлениями, которые раньше рассматривали как независимые. Максвелл дал определение такому важнейшему понятию физики, как электромагнитное поле.

Изучение основ электродинамики начинается с электрического поля в вакууме. Эта тема является фундаментом раздела, включающего электростатику и постоянный ток. Особое внимание при изучении этого раздела следует обратить на закон сохранения электрического заряда, инвариантность его в теории относительности, на силовую и энергетическую характеристики поля ( напряженность, потенциал) и связь между ними.

При изучении электрического поля в диэлектриках следует представлять механизм поляризации полярных и неполярных диэлектриков и преимущество вектора электрического смещения перед вектором напряженности для описания электрического поля в неоднородных диэлектриках.

При изучении вопроса об энергии заряженных проводников и конденсаторов студент должен обратить внимание на то, что в рамках электростатики нельзя однозначно решить вопрос о локализации этой энергии. С равны правом можно считать, что энергией обладают как заряженные проводники, так и создаваемое ими электрическое поле.

Изучение темы « Постоянный электрический ток» следует начать с классической электронной теории проводимости металлов и на ее основе рассмотреть законы Ома и Джоуля– Ленца следует четко разграничивать такие понятия, как разность потенциалов, электродвижущая сила и электрическое напряжение.

Изучая раздел «Магнитное поле», студент должен уделить особое внимание закону Ампера, знать и уметь применять закон Био–Савара–Лапласа для расчета магнитной индукции или напряженности магнитного поля прямолинейного и кругового токов, а также закон полного тока ( циркуляция вектора магнитной индукции) для расчета магнитного поля тороида и длинного соленоида. При изучении вопроса, связанного с действием магнитного поля на движущиеся заряды, нужно уметь применять силу Лоренца для определения направления движения заряженных частиц в магнитном поле, представлять себе принцип действия циклических ускорителей заряженных частиц, а также определять работу перемещения проводника и контура с током в магнитном поле.

При изучении явления электромагнитной индукции необходимо усвоить ,что механизм возникновения ЭДС индукции имеет электронный характер, Изучив основной закон электромагнитной индукции Фарадея– Максвелла, студент на его основе должен уметь вывести и применять для расчетов формулу электродвижущей силы индукции и энергию магнитного поля.

Изучение магнитных свойств вещества носит в основном описательный характер. Студент при этом должен уяснить, что магнитное поле, в отличие от электрического, является вихревым.

Студенту следует ясно представлять себе физический смысл уравнений Максвелла (в интегральной форме), знать, что переменные электрическое и магнитное поля взаимосвязаны, они поддерживают друг друга и могут существовать независимо. Под энергией электромагнитного поля следует подразумевать сумму энергий электрического и магнитного полей.