Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Microsoft Office Word Document.docx
Скачиваний:
8
Добавлен:
17.04.2015
Размер:
93.33 Кб
Скачать

Дисахариды

Дисахариды

        биозы, углеводы, молекулы которых состоят из двух остатков моносахаридов (См. Моносахариды). Все Д. построены по типу гликозидов (См. Гликозиды). При этом водородный атом гликозидного гидроксила одной молекулы моносахарида замещается остатком др. молекулы моносахарида за счёт полуацетального или спиртового гидроксила. В первом случае образуются Д., не обладающие восстанавливающими свойствами, во втором — Д. с восстанавливающими свойствами (I). В группу невосстанавливающих Д. входят трегалоза (микоза, или грибной сахар), состоящая из 2 остатков глюкозы (См.Глюкоза) (II); Сахароза, состоящая из остатков глюкозы и фруктозы (III), и др. К группе восстанавливающих Д. относятсяМальтоза (IV), Целлобиоза (V), Лактоза (VI) и др. Д. могут содержать 5- и 6-членные кольца моносахаридов (пентозы и гексозы) и различаться по конфигурации гликозидной связи (α- или β-гликозиды). Пространственные формы (конформации (См.Конформация)) колец моносахаридных остатков в разных Д. могут варьировать. Так, целлобиоза и мальтоза различаются не только конфигурацией гликозидной связи (α — у мальтозы и β — у целлобиозы), но и тем, что в целлобиозе оба остатка находятся в одинаковой конформации, а в мальтозе — в разных.

         Д. — хорошо кристаллизующиеся вещества, легко растворимы в воде и в 45 — 48°-ном спирте, плохо растворимы в 96°-ном спирте; оптически активны; сладки на вкус. Гидролиз Д. (для сахарозы называется инверсией) происходит при действии кислот; при наличии 5-членного кольца в моносахаридном остатке скорость кислотного гидролиза Д. возрастает. Гидролиз Д. осуществляется также ферментами (карбогидразами), например α- или β-гликозидазами (в зависимости от типа гликозидной связи в Д.). В результате гидролиза образуются моносахариды.

         Д. широко распространены в животных и растительных организмах. Они встречаются в свободном состоянии (как продукты биосинтеза или частичного гидролиза полисахаридов), а также как структурные компоненты гликозидов и др. соединений. Обычно Д. получают из природных источников (например, сахарозу — из сахарной свёклы или сахарного тростника, лактозу — из молока животных). Многие Д. синтезируют химическими и биохимическими методами.

         Сахароза, лактоза и мальтоза — ценные пищевые и вкусовые вещества. Производством сахарозы занята сахарная промышленность.

Полисахариды

ПОЛИСАХАРИДЫ

(гликаны), полимерные углеводы, молекулы к-рых построены из моносахаридных остатков, соединенных гликозидными связями.

Степень полимеризации П. составляет от 10-20 до неск. тысяч остатков. Каждый моносахаридный остаток в составе П. может находиться в пиранозной или фуранозной форме и иметь а- или р-конфигурацию гликозидного центра (см. Моносахариды).Моносахаридный остаток способен образовывать одну гликозидную связь с соседним моносахаридом, но может предоставить неск. гидроксильных групп для присоединения др. моносахаридов. В соответствии с этим, как и в случае олигосахаридов, молекулы П. могут быть линейными или разветвленными. Линейные П. имеют один невосстанавливающий и один восстанавливающий конец; в разветвленных П. также м. б. только один восстанавливающий конец, тогда как число невосстанавливающих концевых моносахаридных остатков на 1 превышает число разветвлений. Благодаря гликозидной гидроксигруппе восстанавливающего конца молекулы П. могут присоединяться к молекулам неуглеводной природы, напр. к белкам и пептидам с образованием гликопротеинов и протеогликанов, к липидам с образованием липополисахаридов и гликолипидов и т. д.; в сравнительно редких случаях наблюдается образование циклических П.

Гидрокси-, карбокси- и аминогруппы моносахаридных остатков, входящих в П., в свою очередь могут служить местами присоединения неуглеводных группировок, таких, как остатки орг. и неорг. к-т (с образованием ацетатов, сульфатов, фосфатов и др.), пировиноградной к-ты (образующей циклич. ацетали), метанола (образующего сложные эфиры с уроновыми к-тами) и т. д.

П., построенные из остатков только одного моносахарида, наз. гомополисахаридами (гомогликанами); в соответствии с природой этого моносахарида различают глю-каны, маннаны,галактаны, ксиланы, арабинаны и др. Полное название П. должно содержать информацию об абс. конфигурации входящих в его состав моносахаридных остатков, размере циклов, положении связей и конфигурации гликозидных центров; в соответствии с этими требованиями строгим назв., напр., целлюлозы будет поли(1 : 4)-b-D-глюкопиранан.

П., построенные из остатков двух и более моносахаридов, наз. гетерополисахаридами (гетерогликанами). К ним относятся глюкоманнаны, арабиногалактаны, араби-ноксиланы и др. Строгие назв. гетерогликанов (а также и гомополисахаридов, содержащих разветвления или неск. типов связей) громоздки и неудобны в употреблении; обычно пользуются широко распространенными тривиальными назв. (напр., гепарин, гликоген, инулин, ламтаран, хитин), а для изображения структурных ф-л часто применяют сокращенную запись (см. также Олигосахариды):

ВСР№18

АМИНОКИСЛОТЫ, органические к-ты, содержащие одну или несколько аминогрупп. В зависимости от природы кислотной ф-ции аминокислоты подразделяют на аминокарбоновые, например H2N(CH2)5COOH, аминосульфоновые, например H2N(CH2)2SO3H, аминофосфоновые, например H2NCH[Р(О)(ОН)2]2, и аминоарсиновые, например H2NC6H4AsO3H2. Согласно правилам ИЮПАК, название

аминокислоты производят от названия соответствующей к-ты; взаимное расположение в углеродной цепи карбоксильной и аминной групп обозначают обычно цифрами, в нек-рых случаях - греч. буквами. Однако, как правило, пользуются тривиальными названиями аминокислот.

Структура и физические свойства. По физ. и ряду хим. свойств аминокислоты резко отличаются от соответствующих к-т и оснований (см. табл. 1 и 2). Они лучше раств. в воде, чем в орг. р-рителях; хорошо кристаллизуются; имеют высокую плотность и исключительно высокие т-ры плавления (часто разложения). Эти св-ва указывают на взаимод. аминных и кислотных групп, вследствие чего аминокислоты в твердом состоянии и в р-ре (в широком интервале рН) находятся в цвиттер-ионной форме. Напр., для глицинакислотно-основное равновесие: 

Взаимное влияние групп особенно ярко проявляется у аминокислот, где обе группы находятся в непосредств. близости, а также у о- и n-аминобензойных к-т, где их взаимод. передается через систему сопряженных связей. Благодаря электроноакцепторным св-вам группы —Н3 резко усиливается кислотностькарбоксильных групп, напр. рКа глицина 2,34, тогда как уксусной к-ты 4,75, аланина 3,6. Аминогруппаподвергается взаимокомпенсируемому влиянию электроноакцепторной карбонильной группы и электронодонорного отрицательно заряженного атома кислорода, в результате чего, напр., основностьаминогрупп аминоуксусной и n-аминобензойной к-т мало отличается от основности соотв. этиламина ианилина. Аминогруппа аминокислот ионизирована в несколько меньшей степени, чем карбоксильная группа, и водный р-р аминокислоты имеет слабокислый характер. Значение рН, при к-ром концентрация катионоваминокислоты равна концентрации анионов, наз. изоэлектрич. точкой (рI). Все аминокислоты в изоэлектрич. точке имеют минимум р-римости (в р-рах к-т и щелочей р-римость возрастает). Вблизи рI р-ры аминокислот обладают миним. буферным действием, а вблизи рК каждой функц. группы-максимальным.

Табл. 1 .- СВОЙСТВА LАМИНОКИСЛОТ  

* В скобках дается однобукв. обозначение аминокислот, рекомендуемое ИЮПАК. ** Некодируемые аминокислоты: остальные кодируются генетич. кодом. *** Р-р в 1 н. НС1.

Табл. 2-СВОЙСТВА АМИНОКИСЛОТ 

Цвиттер-ионная структура аминокислот подтверждается их большим дипольным моментом (не менее 50*10-30 Кл*м), а также полосой поглощения 1610-1550 см -1 в ИК-спектре твердой аминокислоты или ее р-ра.

Все кроме аминоуксусной (глицина), имеют асимметрииотносятся к L-ряду (S-конфигурация) и имеют след. пространств. строение:

При переходе от нейтральных р-ров к кислым для аминокислот L-ряда увеличивается положит. вращение, для D-ряда-отрицательное. Гидроксипролин, треонин, изолейцин имеют два асимметрич. атома и образуют по две пары диастереомеров. Оптич. активность аминокислот сильно зависит от длины волны поляризованного света (дисперсия оптич. вращения). Как правило, аминокислоты более устойчивы к рацемизации, чем их производные. Повышенной конфигурационной стабильностью отличаются N-бензилоксикарбонильные производные аминокислот.

Расщепление рацематов аминокислот на оптич. антиподы производят затравочной кристаллизацией их солейс арилсулъфокислотами или кристаллизацией диастереомерных солей ацильных производных аминокислот с оптически активными основаниями или солей эфиров аминокислот с оптически активными к-тами. Часто используют энантиоселективный гидролиз ацилами-нокислот ацилазами или гидролиз эфиров аминокислотэстеразами, причем ферменты атакуют в первую очередь L-аминокислоты. Перспективно расщепление рацематов лигандообменной хроматографией. Хроматографию используют также для анализа энантиомерного состава аминокислот.

Химические свойства. Р-ции по карбоксильным группам аминокислот, аминогруппа к-рых защищенаацилированием или солеобразованием, протекают аналогично превращениям карбоновых к-т. Аминокислоты легко образуют соли, сложные эфиры, амиды, гидразиды, азиды, тиоэфиры, галогенангидриды, смешанныеангидриды и т.д. Эфиры аминокислот под действием натрия или магнийорг. соед. превращаются ваминоспирты. При сухой перегонке в присут. Ва(ОН)2 аминокислоты декарбоксилируются.

Р-ции аминогрупп аминокислот аналогичны превращениям аминов. Аминокислоты образуют соли с минер, к-тами и пикриновой к-той, легко ацилируются хлорангидридами к-т в водно-щелочном р-ре (р-ция Шоттена - Баумана) и алкилируются алкилгалогенидами. Метилиодид и диазометан превращают аминокислоты вбетаины. С формалином аминокислоты дают мегилольные или метиленовые производные, а в присут. муравьиной к-ты или каталитически активированного Н2-N,N-диметиламинокислоты. Под действием HNOароматич. аминогруппы диазотируются, а алифатические замещаются на гидроксил. При обработке эфиров аминокислот изоцианатами и изотиоцианатами образуются производные мочевины итиомочевины. При нагр. с содой или при одноврем. воздействии алкоголята и СО2 аминокислоты дают солиили эфиры N-карбоксипроизводных аминокислот, а при использовании CS2-аналогичные дитиокарбаматы.

Р-ции с одноврем. участием групп NH2 и СООН наиб. характерны дляобразуют прочные хелатные комплексы, что используется в комплексонах и в комплексообразующих ионообменных смолах на основе аминокарбоновых и аминофосфоновых к-т. При взаимод. с фосгеном превращаются в циклич. ангидриды N-карбоксиаминокислот (ф-ла I), а при нагр. с уксусным ангидридом илиацетилхлоридом - в азлактоны (II); нагревание аминокислот с мочевиной или обработка изоцианатами даетгидантоины (III), а при использовании особенно легко их эфиры, при нагр. превращаются в 2,5-пиперазиндионы, или  к-ты к-та при нагр. образует в осн. полиамид и лишь частично превращ. в капролактам, что характерно и для аминокислот с большим числом метиленовых звеньев между функц. группами. Бетаиныпри нагр. могут обратимо превращ. в эфиры диметиламинокислот, напрПри элиминировании триметиламинаоетаины с укороченной углеродной цепочкой. Из-за положит. заряда на четвертичном атоме N бетаины не образуют солей со щелочами. По аналогичной причине аминосульфоновые и аминофосфоновые к-ты не образуют солей с к-тами.арилизотиоцианатовтиогидантоины (IV). 

на взаимод. с нингидрином, в результате к-рого аминокислота расщепляется до альдегида, СО2 и NH3, a NH3 образует с нингидрином фиолетовый краситель. Для количеств. определения измеряют объем выделившегося СО2 или, чаще, фотометрируют образующийся краситель. Последний метод используется в автоматич. хроматографах, позволяющих разделять на сульфокатионитах и количественно анализировать сложные смеси аминокислот и пептидов. Еще более чувствителенфлуоресцентный анализ продуктов реакции аминокислот с о-фталевым диальдегидом. Быстро развивается лигандообменный хроматографический анализ аминокислот и пептидов на силикагельных сорбентах в присутствии ионов меди. Бумажная и тонкослойная хроматография чаще используются для качественного анализа. Измерение объема N2, выделяющегося при дезаминировании аминокислот азотистой к-той, а такжетитрование аминокислот щелочью в избытке формалина (методы Ван Слайка и Сёренсена) сохранили лишь историческое значение.

галогенированием карбоновых к-т или эфиров в с послед. заменойгалогена на аминогруппу при обработке амином, аммиаком или фталимидом калия (по Габриелю).

аминофосфоновых к-т по р-ции Кабачника-Филдса, напр.: 

В этой р-ции вместо альдегидов м. б. использованы кетоны, а вместо диалкилфосфитов - диалкилтиофосфиты, кислые эфиры алкил(арил)фосфонистых к-т RP(OH)OR и диарилфосфиноксиды Аr2НРО. Таким путем получен широкий набор комплексонов.

Альдегиды и кетоны или их более активные производные - кетзли служат исходными соед. для синтеза с увеличением числа углеродных атомов на две единицы. Для этого их конденсируют с циклич. производными аминоуксусной к-ты - азалакгонами, гидантоинами, тиогидантоинами, 2,5-пиперазиндионами или с ее медными или кобальтовыми хелатами, напр.: 

Удобные предшественники эфир и нитроуксусный эфир. К их атомамможно предварительно ввести желаемые радикалы методами алкилирования или конденсации. Кетокислоты превращ. в в присут. NH3 или гидрированием их оксимов или гидразонов.

Нек-рые Lаминокислоты ввиду сложности синтеза и разделения оптич. изомеров получают микробиол. способом (лизин, триптофан, треонин) или выделяют из гидролизатов прир. белковых продуктов (пролин,цистин, аргинин, гистидин). Перспективны смешанные химически-ферментативные способы синтеза, напр.: 

Исходные тетрахлоралканы получают теломеризациеи этилена с СС14.

Ароматич. аминокислоты синтезируют восстановлением нитробензойных к-т или окислением толуидиновпосле предварит. бензоилирования аминогруппы. Антраниловую к-ту получают из фталевого ангидрида: 

изотопами 15N и 14С, обычно пользуются методами Габриеля и Штреккера соответственно. Меченные 3Н аминокислоты получают из ненасыщ. предшественников.

Сульфаниловая к-та образуется при нагр. сульфата анилина до 180°С. Ее мета-изомер получаютсульфированием нитробензола с послед. восстановлением нитрогруппы.

Применение. Наиб. интерес представляют 20 Lаминокислот (аланин, аргинин, аспарагин и др.), входящих в состав белковых молекул. Смеси L-аминокислот., а также индивидуальные аминокислоты (напр.,метионин)применяют в медицине для парэнтерального питания больных с заболеваниями пищеварит. и др. органов, при нарушениях обмена в-в и др.; лизин, метионин, треонин, триптофан - в животноводстве для обогащения кормов; глутамат натрия и лизин - в пищ. пром-сти к-та (аминалон) - медиатор в центр. нервной системе, применяется как лек. ср-во при сосудистых заболеваниях головного мозга. Ароматич. аминокислоты используют в синтезекрасителей и лек. ср-в. На основе аминокарбоновых и аминофосфоновых к-т синтезируют селективныекомплексоны, комплексообразующие иониты, лигандообменные сорбенты, ПАВ.

ВСР№19