Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Diplom_Kuznetsova.docx
Скачиваний:
93
Добавлен:
16.04.2015
Размер:
498.05 Кб
Скачать

1.8 Применение ультрадисперсных алмазов

В начале 80-х годов ХХ столетия была обнаружена возможность соосаждения ультрадисперсных алмазов с металлами при их химическом  или электрохимическом восстановлении из водных растворов. Используемые УДА представляют собой частицы, близкие по форме к сферическим или овальным. Такие частицы могут образовывать седиментационно и коагуляционно устойчивые системы в электролитах. При этом УДА сочетают в себе свойства одного из самых твердых веществ в природе с химически активной оболочкой в виде функциональных групп, способных, как оказалось, участвовать в химических и электрохимических циклах. Во время осаждения взвешенные частицы УДА взаимодействуют с поверхностью растущего покрытия благодаря гидродинамическим, электростатическим и молекулярным силам. Этот цикл приводит к созданию композиционного покрытия. Методами ОЖЕ- и ИК-спектроскопии удалось выяснить, что частицы УДА внедряются в металлическую матрицу. Частицы УДА, в отличие от обычных мелкодисперсных порошков, являются не наполнителями, а скорее специфическими стуктурообразующими элементами. В связи с тем, что размеры их чрезвычайно малы (от 4 до 6 нм), содержание их в покрытии обычно невелико – от 0,1 до 1,5 %.  Любым металл-алмазным покрытиям в большей или меньшей степени свойственны общие характеристики: существенное увеличение адгезии и когезии, повышение микротвердости и износостойкости, уменьшение пористости, повышение антикоррозионных свойств и увеличение рассеивающей способности электролитов.

Ультрадисперсные алмазы (УДА), являющиеся продуктом взрывного разложения мощных взрывчатых веществ, представляют собой новый тип углеродного материала, обладающего уникальным сочетанием микроструктуры алмаза в ядре отдельной частицы со специфической надструктурной организацией периферийной оболочки. Промышленный синтез УДА был освоен в 1982 г. Его основные свойства: плотность 3,3 г/см , размер частиц 2-20 нм, удельная поверхность 150 - 450 м /г, химический состав (%): С - 93,2 - 100; О - 0 - 6,8; Si - следы, величина несгораемого остатка (масс. %) < 2, электросопротивление 7,7-109 Омм.

На поверхности частиц УДА присутствуют карбонильные, карбоксильные, метильные и хиноидные группы. Частицы УДА обладают высокой сорбционной емкостью и высокой химической активностью.

В настоящее время УДА находят применение в гальванике, исключительные физико-химические свойства определяют возможность применения их в качестве модификаторов полимерных композиций (резины, каучука и т. д.), в абразивных и полировальных составах, в системах магнитной записи, при изготовлении лекарственных препаратов.

Введенные в электролит УДА связывают кислотные или основные металлсодержащие остатки, что повышает катодную поляризацию и способствует образованию мелкокристаллических осадков. Существенно, что неалмазный углерод, количество которого в УДА 0,4 - 1,5 маc %, не составляет отдельной фазы или отдельных частиц и не определяется кристаллографически как графит или микрографит. Задача периферических неалмазных структур - обеспечить максимальное взаимодействие алмазной частицы с матричным материалом в момент его кристаллизации на катоде.

Процесс уменьшения пористости покрытия и, соответственно, увеличение коррозионной стойкости происходят вследствие помех, создаваемых частицами УДА перемещению дислокаций в плоскости их скольжения. При уменьшении размеров частиц и неизменной их объемной концентрации расстояние между частицами уменьшается, что приводит к образованию тонких беспористых пленок металла.

УДА, являясь мощным адсорбентом, адсорбируют на себя осаждаемые примеси. При этом металлический осадок, находящийся между УДА, становится более чистым и меньше подвержен коррозии. Кроме того, известно, что центрами коррозионного процесса являются микрогальванические пары металл-примесь, а адсорбируя на себя примеси, УДА существенно снижают количество таких микрогальванических пар.

Во время электроосаждения взвешенные в электролите алмазные частицы взаимодействуют с поверхностью растущего осадка благодаря гидродинамическим, молекулярным и электростатическим силам. Этот сложный процесс приводит к образованию КЭП.

В силу малого размера частиц УДА и их невысокого содержания в покрытии (0,5 - 1,0%) существенное повышение износостойкости, микротвердости, коррозионной стойкости не может быть связано с твердостью алмаза. В основе улучшения металл-алмазных материалов лежит целый ряд позитивных изменений структуры осадка. Наличие в покрытии чрезвычайно развитых по площади и прочных по химическим связям граничных слоев металл-алмаз обеспечивает повышенную износостойкость и микротвердость. Высокая химическая и адсорбционная активность поверхности частиц УДА обеспечивает более высокий уровень упрочнения покрытия, чем поверхность других известных дисперсных частиц, не обладающих таким набором свойств, как УДА. Таким образом, граница раздела металл-УДА служит не слабым, как обычно, а наоборот, упрочняющим звеном в структуре КЭП.[8]

  1. Цель и задачи работы

В данной работе будут проведены необходимые исследования по получению никелевых покрытий с повышенными механическими свойствами за счет введения в электролит наноуглеродных добавок УДА-ТАН, АСМ и алмазной шихты. Помимо этого будет проведен поиск возможной стабилизирующей добавки для электролита никелирования, концентрации добавки наноуглеродов и условий нанесения покрытия.

  1. Аппаратура и основные методы исследования

Для повышения некоторых физико-химических свойств никелевого покрытия производилось предварительное исследование различных наноуглеродных добавок.

Предварительный подбор добавки был проведен с несколькими электролитами, составы которых представлены в таблице 1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]