Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Praktikum_ЛП.doc
Скачиваний:
55
Добавлен:
15.04.2015
Размер:
708.1 Кб
Скачать

Решение

Проведем процесс ортогонализации Грама-Шмидта системы векторов базиса .

1) На первом шаге необходимо вычислить векторы . Вычисляем вектор

,

затем скалярное произведение и норму вектора

,

,

и окончательно вектор

, .

2) На втором шаге необходимо вычислить векторы . Сначала вычисляем скалярное произведение

,

затем вектор

.

Теперь нормируем вектор :

,

получаем вектор

, .

3) На третьем шаге необходимо вычислить векторы . Сначала вычисляем скалярные произведения

, ,

затем вектор

.

Теперь нормируем вектор :

,

получаем последний искомый вектор

, .

Итак, ортонормированный базис состоит из векторов:

, , .

Пример 7. Проверить ортогональность векторов , пространства и дополнить эти векторы до ортогонального базиса:

.

Решение. Решение задачи предусматривает нахождение двух векторов , таких, что система векторов , , , образует ортогональную систему векторов в пространстве , то есть при всех () (любые два разных вектора из системы ортогональны).

Проверим ортогональность векторов , . Для этого вычисляем скалярное произведение этих векторов:

.

Так как , то векторы , ортогональны.

Найдем вектор такой, что он ортогонален векторам , , то есть . В результате приходим к системе уравнений

Эту однородную систему решим методом Гаусса. Приводим матрицу системы к ступенчатому виду (меняем местами строки матрицы)

.

Ранг матрицы . Принимая переменные за базисные, а за свободные (обозначаем при этом ), получим общее решение рассматриваемой ОСЛАУ

Итак, общее решение однородной системы имеет вид

Из множества решений выделим частное решение. Положим (для дальнейшего удобства) . Тогда получим . Итак, вектор имеет вид

.

Выполним проверку:

Найдем вектор такой, что он ортогонален векторам , , , то есть . В результате приходим к системе уравнений

Эту однородную систему решим методом Гаусса. Приводим матрицу системы к ступенчатому виду

Ранг ступенчатой матрицы . Принимая переменные за базисные, а - за свободную (обозначаем при этом ), получим общее решение рассматриваемой ОСЛАУ

Из множества решений выделим частное решение. Положим (для дальнейшего удобства) . Тогда получим . Итак, вектор имеет вид

.

Выполним проверку:

Ответ: ортогональный базис имеет вид

, , .

Практикум №1. Линейные пространства

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]