Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материалка.docx
Скачиваний:
132
Добавлен:
11.12.2015
Размер:
454.67 Кб
Скачать

Определение электрического напряжения

То есть электрическое поле должно было «протащить» электроны через нагрузку, и энергия, которая при этом израсходовалась, характеризуется величиной, называемой электрическим напряжением. Эта же энергия потратилась на какое-то изменение состояния вещества нагрузки. Энергия, как мы знаем, не пропадает в никуда и не появляется из ниоткуда. Об этом гласит Закон сохранения энергии. То есть, если ток потратил энергию на прохождение через нагрузку, эту энергию приобрела нагрузка и, например, нагрелась.

То есть, приходим к определению: напряжение электрического тока – это величина, показывающая, какую работу совершило поле при перемещении заряда от одной точки до другой. Напряжение в разных участках цепи будет различным. Напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет гораздо большим, и зависеть величина напряжения будет от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула: 

U=A/q,

где U - напряжение, A – работа, совершенная током по перемещению заряда q на некий участок цепи.

Напряжение на полюсах источника тока

Что касается напряжения на участке цепи – все понятно. А что же тогда означает напряжение на полюсах источника тока? В данном случае это напряжение означает потенциальную величину энергии, которую может источник придать току. Это как давление воды в трубах. Эта величина энергии, которая будет израсходована, если к источнику подключить некую нагрузку. Поэтому, чем большее напряжение у источника тока, тем большую работу может совершить ток.

2) Диэлектрики в электрическом поле

В отличие от проводников, в диэлектриках нет свободных зарядов. Все заряды являются

связанными : электроны принадлежат своим атомам, а ионы твёрдых диэлектриков колеблются

вблизи узлов кристаллической решётки.

Соответственно, при помещении диэлектрика в электрическое поле не возникает направлен-ного движения зарядов

1

. Поэтому для диэлектриков не проходят наши доказательства свойств

проводников — ведь все эти рассуждения опирались на возможность появления тока. И дей-ствительно, ни одно из четырёх свойств проводников, сформулированных в предыдущей статье,

не распростаняется на диэлектрики.

1. Напряжённость электрического поля внутри диэлектрика может быть не равна нулю.

2. Объёмная плотность заряда в диэлектрике может быть отличной от нуля.

3. Линии напряжённости могут быть не перпендикулярны поверхности диэлектрика.

4. Различные точки диэлектрика могут иметь разный потенциал. Стало быть, говорить о

«потенциале диэлектрика» не приходится.

Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

  • Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.

Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает в сегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.

Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле c напряжённостью , направленное против внешнего поля с напряжённостью . В результате напряжённость поля внутри диэлектрика будет выражаться равенством:

В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:

  • Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10−15 с). Не связана с потерями.

  • Ионная — смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10−13 с, без потерь.

  • Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.

  • Электронно-релаксационная — ориентация дефектных электронов во внешнем электрическом поле.

  • Ионно-релаксационная — смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.

  • Структурная — ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.

  • Самопроизвольная (спонтанная) — благодаря этому типу поляризации у диэлектриков, у которых он наблюдается, поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля, наблюдается явление гистерезиса. Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики). Введение спонтанной поляризации, как правило, увеличивает тангенс угла потерь материала (до 10−2)

  • Резонансная — ориентация частиц, собственные частоты которых совпадают с частотами внешнего электрического поля.

  • Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объемных зарядов, особенно при высоких градиентах напряжения, имеет большие потери и является поляризацией замедленного действия.

Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты.