Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

реферат

.docx
Скачиваний:
52
Добавлен:
12.04.2015
Размер:
111.68 Кб
Скачать

Введение

В настоящее время повышение топливной экономичности бензиновых двигателей внутреннего сгорания (ДВС) по-прежнему является актуальной научно-технической задачей. Одним из направлений улучшения экономичности двигателей является регулирование степени сжатия на частичных нагрузках. В таких ДВС реализация переменной степени сжатия требует серьезного вмешательства в конструкцию как самого двигателя, так и силового механизма, что определенным образом сказывается на параметрах рабочего процесса.

В разработке силового механизма уже достигнуты определенные успехи. В последние годы в двигателях с регулируемой степенью сжатия применяются нетрадиционные силовые механизмы, которые характеризуются сложностью, ненадежностью и неэффективностью конструкции. Многие фирмы и исследовательские организации проводят исследования, цель которых – создание силового механизма, обеспечивающего наилучшие эффективные показатели двигателя при регулировании степени сжатия. С сегодняшней точки зрения в автомобильном ДВС перспективным является использование кривошипно-кулисного силового механизма.

В настоящей работе представлены первые результаты работ, направленных на разработку бесшатунного двигателя с кривошипно-кулисным механизмом, обеспечивающим изменение степени сжатия в широких пределах.

Обзор и анализ работ по двигателям с переменной степенью сжатия

Работы по разработке двигателей с переменной степенью сжатия (Ɛх) ведутся в США, Японии, Германии, Австралии, Швейцарии, России и др. странах. К настоящему времени известно большое множество двигателей с различной конструкцией силового механизма, обеспечивающего Ɛх. Так, в двухтактном двигателе со встречно-движущимися поршнями степень сжатия изменяется с помощью дополнительных балансиров с эксцентриками, связанных с коленчатым валом через шатуны.

Работоспособные образцы аксиальных двигателей с Ɛх были созданы в США , России и других странах. В таких двигателях приводным механизмом является косая шайба с переменным углом наклона, который изменяет ход поршня (S) и соответственно степень сжатия. Недостатками этих двигателей являются повышенные потери на трение (до 20%) и низкая надежность, а также большие инерционные нагрузки на силовой вал.

Более интересные и надежные решения изменения степени сжатия посредством регулирования S найдены в конструкциях ДВС с плоским механизмом. В предложенном инженером Н. Pouliot и разработанном фирмами Sandia (США) и ERDA (Австралия) двигателе при изменении хода поршня в пределах S = 25,4 … 108 мм степень сжатия изменяется от 6,3 до 8. Топливная экономичность автомобиля с двигателем Н. Pouliot по ездовым циклам ЕРА для города и шоссейных дорог составляет 20%.

В последние годы концерн DaimlerChrysler совместно с ГНЦ НАМИ разработал двигатель с траверсным механизмом изменения S . Степень сжатия в этом двигателе изменяется от 7,5 до 14, экономия топлива превышает 15%.

Анализ двигателей с Ɛх за счет регулирования S показал следующие недостатки:

— согласно потери на трение в двигателе с S = var на 40% больше, чем в классическом ДВС и это различие резко возрастает с увеличением частоты вращения коленчатого вала;

— существенные потери индикаторной мощности двигателя на привод изменения S;

— уменьшение S при неизменном диаметре поршня ведет к снижению турбулентности в цилиндре вследствие уменьшения скорости во впускных клапанах. В этом случае увеличивается продолжительность сгорания и теплоотдача в стенки, что приводит к росту индикаторного расхода топлива;

— с уменьшением S резко возрастают выбросы СН вследствие увеличения поверхности камеры сгорания и падения температуры сгорания.

Анализ ДВС с известными силовыми механизмами свидетельствует, что максимальное значение степени сжатия на частичных режимах не превышает 14 из-за большого темпа роста потерь на трение по мере увеличения Ɛх. Это ограничивает возможность дальнейшего повышения эффективного КПД за счет увеличения степени сжатия свыше 14.

Среди других ДВС бесшатунный двигатель с кривошипно-кулисным силовым механизмом (ККМ)

6, 7 имеет наибольший потенциал по использованию переменной степени сжатия. Отличительной особенностью схемы двигателей с ККМ являются малые потери на трение во всем диапазоне нагрузок и частоты вращения, полная динамическая уравновешенность, компактность и малая удельная масса. Кроме того, в этом ДВС намного проще и эффективнее реализуется переменная степень сжатия, что в целом повышает показатели двигателя.

В АДИ ДонНТУ создан на базе двигателя экспериментальный одноцилиндровый бесшатунный ДВС с Ɛх. Двигатель (рис. 1) представляет собой двухвальный поршневой двигатель с кривошипнокулисным механизмом, в котором усилие от поршня передается на коленчатые валы через шток, механизм изменения степени сжатия и кулису с ползунами, установленными на кривошипных шейках. Коленчатые валы связаны между собой посредством двух одинаковых шестерен.

Рис. 1. Схема бесшатунного двигателя

(механизм изменения степени сжатия не показан):

1 – шток, 2 – кулиса

Результаты экспериментальных исследований показали:

– регулирование Ɛх на частичных нагрузках работающего двигателя в диапазоне от 7 до 19 повышает топливную экономичность более чем на 30 %;

– устройство изменения Ɛх имеет высокую чувствительность и способность быстро реагировать на по явление детонации. Начальная стадия развития детонации происходит в 1…3-х рабочих циклах двигателя, а затем детонация полностью исчезает;

– на привод механизма изменения Ɛх затрачивается незначительная энергия (приблизительно 0,1…0,2 % максимальной мощности двигателя);

– регулирование Ɛх во время работы двигателя не оказывает влияния на кинематику ККМ.

Влияние силового механизма на газораспределение в двигателе

На кафедре автомобилей и двигателей АДИ ДонНТУ были проведены расчетно-теоретические и экспериментальные исследования бесшатунного и

классического ДВС с переменной степенью сжатия.

Одной из задач этих исследований было выявление влияния силового механизма на работу двигателя при регулировании степени сжатия.

Применение в бесшатунном двигателе кривошипно-кулисного механизма приводит к изменению кинематики поршня. В отличие от классического в

бесшатунном двигателе поршень перемещается по косинусоидальному закону. В результате скорость поршня вблизи в.м.т. (рис. 2) снижается, а около н.м.т. увеличивается. Это приводит к изменению фаз газораспределения в бесшатунном двигателе относительно классического ДВС.

Рис. 2. Зависимость скорости поршня от угла

поворота коленчатого вала для двигателей с ККМ (=0) и

КШМ при n = 4500 мин-1

Изменение степени сжатия перемещением цилиндра относительно картера приводит в двухтактном двигателе к изменению высоты открытия впускного,

выпускного и продувочных окон и соответствующих фаз газораспределения.

Как показывают расчеты, кинематика поршня оказывает существенное влияние на фазы газораспределения. Применение ККМ, уменьшая время-сечение

А’ вып выпускного окна в среднем на 11% (рис 3) относительно двигателя с КШМ, усиливает влияние регулирования степени сжатия на процессы газообмена.

Однако характер зависимости время-сечения от степени сжатия остается неизменным. Это позволяет при изменении степени сжатия от 7 до 17 уменьшить величину А’вып более чем на 30 % независимо от силового механизма.

Следует отметить, что снижение А’вып на частичных нагрузках и при малых частотах вращения коленчатого вала является положительным, так как позволяет сократить потери свежего заряда при продувке и улучшить экономичность двигателя.

Рис. 3. Изменение время-сечения выпускного окна от

степени сжатия для двигателей с ККМ и КШМ

Влияние силового механизма на индикаторные и эффективные показатели двигателя

Изменение кинематики поршня в бесшатунном двигателе, оказывает существенное влияние на рабочий процесс . В этом двигателе уменьшение скорости поршня в районе в.м.т. приводит к снижению тепловых потерь в процессе сгорания и увеличению степени последующего расширения.

Результаты экспериментального исследования показали положительное влияние кинематики поршня бесшатунного двигателя на его индикаторные показатели. Так, например, при N e = 0,8 кВт, n = 3000 мин-1

и Ɛх = 7,7 удельный индикаторный расход топлива ниже более чем на 11 % по сравнению с исследуемым классическим двигателем. Очевидно, это связано со снижением прямых потерь смеси в процессе газообмена, а также лучшим протеканием процесса сгорания.

Анализ полученных данных показал, что увеличение степени сжатия в бесшатунном двигателе сопровождается более равномерным повышением индикаторных показателей. При высоких степенях сжатия влияние кинематики поршня на улучшение индикаторных показателей двигателя усиливается.

Повышение топливной экономичности бесшатунного двигателя связано не только с кинематикой поршня, но и с малыми механическими потерями.

Из результатов экспериментальных исследований механических потерь в бесшатунном и классическом двигателях видно, что в бесшатунном двигателе механические потери при одинаковых Ne и Ɛх во всех случаях ниже (рис. 4). Кроме того, с повышением степени сжатия разница в величине механических потерь существенно возрастает.

Рис. 4. Влияние Ɛх на механические потери в

двигателях с ККМ и КШМ: N e = 0,4 кВт, n = 3000 мин-1

Так, при степени сжатия 7,7 механические потери в бесшатунном двигателе ниже, чем в классическом ДВС на 1,5…2 %, а при Ɛх = 17,1 — на 26 %. Это связано с различным характером зависимости среднего давления механических потерь p м для различных ДВС при изменении степени сжатия. В бесшатунном двигателе зависимость p м = f(x ) носит почти линейный характер, в то время как в двигателе с КШМ –степенной характер.

Выявленные преимущества бесшатунного двигателя по индикаторным показателям и механическим потерям существенно проявляются на его эффективных показателях.

Полученные опытным путем зависимости индикаторных и эффективных показателей (рис. 5) показывают целесообразность использования кривошипно-кулисного механизма в двигателях с регулированием степени сжатия.

В бесшатунном двигателе в отличие от классического удельный эффективный расход топлива снижается с повышением степени сжатия свыше 14 на всех скоростных и нагрузочных режимах. Это позволяет устанавливать Ɛх в бесшатунном двигателе на максимально возможном уровне — по началу детонации (или самовоспламенению бензомасляной смеси в двухтактном двигателе).

Рис. 5. Зависимость показателей двигателей с КШМ

и ККМ от нагрузки при регулировании

степени сжатия: n = 3000 мин-1

В исследуемом двигателе с КШМ степень сжатия для различных режимов изменялась от 10 до 14 и ограничивалась увеличением величины g e из-за роста механических потерь. Таким образом, в двигателе с ККМ использование Ɛх может повысить топливную экономичность на малых нагрузках более чем на 15% по сравнению с двигателем с КШМ и изменяемой степенью сжатия, а по отношению к классическому двигателю с фиксированной степенью сжатия — на 30…45 %.

Заключение

Представленные результаты показывают, что применение в бензиновом двигателе регулирования степени сжатия на частичных режимах может существенно улучшить его топливную экономичность.

Рассмотрены варианты принципиальных схем силового механизма, связанные с реализацией переменной степени сжатия применительно к автомобильному двигателю. В ДВС с известными силовыми механизмами максимальная переменная степень сжатия не превышает 14 вследствие значительного роста с повышением Ɛх потерь на трение, что ограничивает возможность дальнейшего улучшения эффективного КПД двигателя.

Более высокая топливная экономичность при регулировании степени сжатия достигается в бесшатунном двигателе с кривошипно-кулисным механизмом.

Используя ККМ в бензиновом двухтактном двигателе, удалось снизить механические потери на 26 %, повысить топливную экономичность на 30…45 %. Кроме того, анализ работ свидетельствует о значительном

превосходстве двигателей с ККМ по вибрации и шуму, уравновешенности, компактности и удельной мощности. В таких двигателях конструктивно проще и намного эффективнее реализуется переменная степень сжатия.

Дополнительно к первым результатам, изложенным в настоящей статье, необходимо выполнить большой объем исследовательских и опытно-конструкторских работ по разработке и созданию бесшатунного бензинового двигателя с переменной степенью сжатия.

Список литературы:

1. Tumoney S.G. Variable compression ratio diesel engine // Intersoc Energy Convers. – Eng. Conf. – Boston.

Mass. – 1971. – P. 356 – 363. 2. Welsh H.W., Riley C.T.

The Variable Displacement Engine: An Advanced Concept Power Plant // SAE Paper. – 1971. – № 710830. 3.

Кутенев В.Ф., Зленко М.А., Тер-Мкртичьян Г.Г.

Управление движением поршней - неиспользованный

резерв улучшения мощностных и экономических пока-

зателей дизеля // Автомобильная промышленность. –

1998. – № 11. – С. 25 – 29. 4. Pouliot H.N., Robinson C.W., Delameter W.R. A Variable – Displacement

Spark – Ignition Engine. Final Report // Report No.

SAND 77 – 8299, Sandia Laboratories. – California,

1978. 5. Еремкин В. Экспорт Технологий // Авто Ревю.

– 2000. – № 5. – С. 32. 6. Мищенко Н.И. Нетрадици-

онные малоразмерные двигатели внутреннего сгора-

ния. В 2 т. Т. 1. Теория, разработка и испытание не-

традиционных двигателей внутреннего сгорания. –

Донецк: Лебедь, 1998. – 228 c. 7. Neuer Motor – Typ vor

der Serienreife: Auberge wohnliche Laufrune. Ind // ANZ.

– 1990. – Vol. 112, № 102. – S. 23.