Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диэлектрики.doc
Скачиваний:
59
Добавлен:
12.04.2015
Размер:
881.15 Кб
Скачать

Статическое электрическое поле в веществе

3.1. Диэлектрики. Полярные и неполярные молекулы. Диполь в однородном и неоднородном электрических полях

Полярные молекулы, подобно электрическим диполям, обладают собственным электрическим дипольным моментом:

, (3.3)

где l – радиус-вектор, соединяющий центры "тяжести" зарядов. Он направлен от отрицательного заряда к положительному заряду.

При внесении полярной молекулы в однородное внешнее электрическое полена каждый из зарядов действуют равные по величине, но противоположные по знаку силы (рис. 3.2). В результате она поворачивается в нем так, чтобы её электрический дипольный момент совпал по направлению с направлением внешнего электрического поля. Величина собственного электрического дипольного момента при этом не изменяется.

Молекулы, у которых в отсутствие внешнего электрического поля центры "тяжести" зарядов совпадают, называются неполярными. Такие молекулы не обладают собственным электрическим дипольным моментом.

При внесениинеполярной молекулы в однородное внешнее электрическое поле центры "тяжести" зарядов смещаются. Она поляризуется, приобретает электрический дипольный момент, который по величине пропорционален напряженности внешнего электрического поля (p  E) (рис. 3.3).

Поэтому неполярную молекулу во внешнем электрическом поле тоже можно рассматривать как электрический диполь.

Так как молекулы диэлектриков по своим свойствам можно рассматривать как электрические диполи, то для понимания явлений в диэлектриках необходимо знать, как ведет себя диполь во внешнем электрическом поле. Зная, что происходит с диполем, а следовательно, с полярными или неполярными молекулами во внешнем электрическом поле, можно судить о том, что будет происходить и с диэлектриком, состоящем из соответствующих молекул.

3.1.1. Диполь в однородном электрическом поле

При внесении электрического диполя в однородное внешнее электрическое поле на каждый из его зарядов со стороны поля будут действовать равные по величине, но противоположные по направлению силы:

.

Силы создают вращающий момент:

или , (3.4)

который будет стремиться повернуть диполь так, чтобы его электрический дипольный момент был направлен по направлению внешнего электрического поля (рис. 3.2).

3.1.2. Диполь в неоднородном внешнем электрическом поле

(3.6)

Под действием этой силы диполь будет либо втягиваться в область более сильного поля (), либо выталкиваться из него () (рис. 3.4).

Такое же действие оказывает электрическое поле на молекулы диэлектрика.

3.2. Свободные и связанные (поляризационные) заряды в диэлектриках. Поляризация диэлектриков. Вектор поляризации (поляризованность)

Так как на молекулы диэлектрика во внешнем однородном электрическом поле действуют силы, стремящиеся развернуть их так, чтобы их электрический дипольный момент был направлен по направлению поля, то при определенных условиях может получиться так, что все молекулы диэлектрика сориентируются в поле и их электрические дипольные моменты будут направлены по направлению внешнего электрического поля. На поверхностях диэлектрика в этом случае "появятся" заряды обоих знаков с поверхностной плотностью +' и -' (рис. 3.5).

Процесс "появления" зарядов на диэлектриках во внешнем электрическом поле называютполяризацией диэлектрика. "Появившиеся" заряды называют связанными (поляризационными).

Различные вещества поляризуются по-разному в зависимости от их строения. Наиболее часто встречаются следующие виды поляризации диэлектриков:

а) деформационная поляризация – это поляризация диэлектриков, при которой у атомов возникает (индуцируется) дипольный момент за счет деформации электронных орбит. Наблюдается у диэлектриков, состоящих из неполярных молекул у веществ, молекулы которых имеют симметричное строение (N2, H2, O2, CO2, CH4);

б) ориентационная, или дипольная поляризация, которая заключается в ориентации имеющихся дипольных моментов молекул по направлению электрического поля. Естественно, что тепловое движение препятствует полной ориентации молекул, но в результате совместного действия обоих факторов (электрического поля и теплового движения) возникает преимущественная ориентация дипольных моментов по полю. Ориентация тем сильнее, чем больше напряженность электрического поля и ниже температура. Она характерна для диэлектриков, состоящих из полярных молекул веществ, молекулы которых имеют асимметричное строение, т. е. центры "тяжести" положительных и отрицательных зарядов не совпадают. К таким веществам, например, относятся H2O, NH3, SO2, CO;

в) ионная поляризация, которая заключается в смещении подрешетки положительных ионов вдоль поля, а отрицательных ионов - против поля. Смещение подрешеток приводит к возникновению дипольных моментов и появлению на поверхности диэлектрика связанных зарядов. Наблюдается у диэлектриков, имеющих ионную кристаллическую решетку (например, у таких веществ, как NaCl, KCl, KBr).

Для количественной характеристики поляризации диэлектриков вводится в рассмотрение физическая величина, численно равная электрическому дипольному моменту единицы объема диэлектрика:

. (3.8)

Эта величина называется вектором поляризации, или поляризованностью. Если поле или диэлектрик однородны, то вектор поляризации одинаков по всему объему. Такую поляризацию называют однородной..

, (3.9)

где  – диэлектрическая восприимчивость вещества, не зависящая от напряженности внешнего электрического поля.

Между вектором поляризации P и поверхностной плотностью связанных зарядов ' имеется связь

, (3.10)

Так как, а, то

, (3.11)