Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1Основы теории электрических и магнитных цепей.doc
Скачиваний:
61
Добавлен:
11.04.2015
Размер:
4.21 Mб
Скачать

16. Смешанное соединение резистора, катушки индуктивности и конденсатора.

Рис. 16.1.

Рассмотрим двухполюсник, состоящий из смешанного соединения резистора, катушки индуктивности и конденсатора (рис. 16.1). Он подключен к источнику синусоидального напряжения, амплитуда которого постоянна.

Будем понимать эту цепь как модель энергетической системы, состоящей из источника напряжения е, соединенного линией электропередач с нагрузкой в виде последовательно соединенных резистораRи катушки индуктивностиL. Такая модель выбрана, потому что в энергетике большую долю нагрузки составляют электродвигатели и трансформаторы, которые необратимо отбирают электрическую энергию из сети (так, как это делает резистор), а также периодически запасают энергию в магнитном поле своих индуктивностей и отдают ее обратно в цепь (так, как это делает катушка индуктивности).

Емкость С рассчитаем так, чтобы токIв линии электропередач был минимальным. Это позволит свести к минимуму потери энергии в проводах линии электропередач, соединяющей источник энергии и нагрузку (см. п.14, а также лабораторную работу №3 по общей электротехнике). Такой режим часто называют компенсацией реактивной мощности нагрузки.

Согласно определению полной проводимости двухполюсника (см. п.13),

,

то есть, при заданном напряжении Uминимум токаIдостигается при минимуме полной проводимостиy. Найдем эту проводимость, используя эквивалентные преобразования сопротивлений.

Комплексное сопротивление последовательно включенных резистора и катушки будет равно сумме комплексных сопротивлений этих элементов (см. п. 13):

.

Комплексная проводимость ветви с резистором и катушкой будет обратна к комплексному сопротивлению этой ветви:

.

При параллельном соединении проводимости складываются, поэтому

.

Чтобы найти у, удобно выделить действительную и мнимую частьY. Сделаем это, умножив числитель и знаменатель дроби на выражение, комплексно сопряженное знаменателю:

.

Используем принятые в электротехнике обозначения: – активная проводимость двухполюсника,– реактивная проводимость двухполюсника (см. п.13).

Согласно определению полной проводимости (см. п.13).

Так как gне зависит от емкости конденсатораС, тоукак функция отСдостигает минимума при. Отсюда получаем формулу для емкости конденсатора:

.

Обратим внимание на то, что – это условие фазового резонанса (см. п.15). Так как при этом сопротивление двухполюсника максимально, то это в данном случае фазовый резонанс совпадает с резонансом токов.

Построим векторную диаграмму напряжений и токов. Вначале нарисуем комплекс напряжения (рис. 16.2). Его фазу будем считать нулевой, поэтому векторнаправим вдоль действительной оси. Затем найдем сдвиг фаз между напряжением и током ветвиRL(см. пример п. 13):- это угол между действительной осью и вектором, изображающим комплекс тока ветвиRL.

Найдем действующее значение тока ветви RL:- это длина вектора, изображающего комплекс тока ветвиRL(в некотором графическом масштабе).

Нарисуем на диаграмме комплекс тока ветви RL (рис. 16.2).

Ток всего двухполюсника равен сумме тока ветвиRLи тока конденсатора:. Ток конденсатора сдвинут по фазе относительно напряжения на. Нарисуем комплекс тока конденсатора и сложим его с комплексом тока ветвиRL, получим ток (рис. 16.3).

Рис. 16.2.

Напряжение и ток ветви RL(нагрузки).

Рис. 16.3. Векторная диаграмма напряжения и тока смешанного соединения RLC (частичная компенсация реактивного тока нагрузки).

Рис. 16.4. Полная компенсация реактивного тока (резонанс токов).

На рис. 16.3 видно, что наличие в цепи тока конденсатора приводит к уменьшению тока в линии электропередачпо сравнению с током нагрузки. На рис. 16.4 показан случай, когда токподобран так, что он обеспечивает минимум тока.