Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Met_po_lab_EWB_02_07_2008.doc
Скачиваний:
35
Добавлен:
11.04.2015
Размер:
6.22 Mб
Скачать

Введение

Разработка любого радиоэлектронного устройства сопровождается физическим или математическим моделированием. Физическое моделирование связано с большими материальными затратами, а часто просто невозможно из-за чрезвычайной сложности устройств. В этом случае прибегают к математическому моделированию с использованием средств и методов вычислительной техники. Примером такой моделирующей программы является Electronics Workbench (EWB). Она позволяет создавать на экране монитора принципиальные электрические схемы устройств, подключать контрольно-измерительные приборы, которые по характеристикам и внешнему виду близки к их промышленным аналогам, заносить результаты в текстовый файл. Моделирование начинается щелчком обычного выключателя. Программа EWB работает под управлением оболочки Windows-98, XP легко осваивается и удобна в пользовании (Карлащук В.И. Электронная лаборатория на IBM PC. Программа Electronics Workbench и ее применение. – М.: Солон – Р, 2000; Карлащук В.И. Электронная лаборатория на IBM PC. Лабораторный практикум на базе Electronics Workbench и MATLAB. – М.: Солон – Пресс, 2004.- 800с.).

В лабораторных работах предлагаются уже составленные, готовые схемы с подключенными контрольно-измерительными приборами. Работа над устройством заключается в изучении, протекающих в нём процессов, их количественном и качественном анализе.

Лабораторный цикл по курсу “Электропитание устройств и систем связи” открывает Лабораторная работа №1, которая является ознакомительной. Её основная задача - изучение функциональных возможностей программы EWB и измерительных приборов. Другие лабораторные работы посвящены изучению основных узлов источников электропитания.

По каждой лабораторной работе оформляется отчет, который должен содержать:

– титульный лист;

– цель работы;

– cхему устройства;

– таблицы измерений и расчёты с формулами и подставленными

численными данными;

– графические результаты (осциллограммы, АЧХ, ФЧХ, графики и

др. с указанием осей и масштабов);

– выводы по работе.

Лабораторная работа № 1

Ознакомление с программой ElectronicsWorkbench

    1. Цель работы

Получение практических навыков работы с моделирующей программой Electronics Workbench (EWB). Изучение измерительных приборов, их схем

включения и приёмов использования.

1.2 Литература

1. В.А. Прянишников Электроника: Полный курс лекций. – 4–е изд. – СПб.: КОРОНА принт, 2004. – 416с., ил.

2. В.И. Карлащук Электронная лаборатория на IBM PC. Лабораторный практикум на базе Electronics Workbench и MATLAB. Издание 5–е. – М.: СОЛОН–Пресс, 2004. – 800 с.: ил. – (Серия «Системы проектирования»).

1.3 Пояснения к работе

В процессе выполнения лабораторных работ используется не весь набор измерительных приборов программы EWB, а только некоторая часть. К ним относятся: цифровой мультиметр, двухканальный осциллограф, измеритель АЧХ и ФЧХ и функциональный генератор. Все необходимые приборы

подключены к исследуемым схемам и следует только научиться правильно пользоваться ими.

Мультиметр (Multimeter). Мультиметр представляет собой универсальный цифровой прибор для измерения постоянного и переменного напряжения и тока, сопротивления и ослабления. Условное изображение («значок») мультиметра имеет вид (рисунок 1.1.).

Рисунок 1.1 – Значок мультиметра

Двойным щелчком по значку мультиметра раскрывается передняя панель (рисунок 1.2.) и появляется доступ к настройке прибора. На панели расположен дисплей для цифрового отображения результатов, две клеммы подключения к схеме и кнопки управления. Назначение основных кнопок понятно из рисунка. Setting– режим установки параметров. После нажатия этой кнопки открывается

Рисунок 1.2– Передняя панель мультиметра

диалоговое окно (здесь не приведено), в котором обозначено:

Ammeter resistance – внутреннее сопротивление амперметра;

Voltmeter resistance – входное сопротивление вольтметра;

Ohmmeter current – ток через контролируемый объект;

Decibel standard – установка эталонного напряжения V1 для

измерения усиления (ослабления) в dB;

по умолчанию V1=1В. К= 20 log (U/V1) [dB].

Мультиметр измеряет эффективное (действующее) значение переменного тока.

Осциллограф (Oscilloscope). Осциллограф имеет два канала (рисунок 1.3):

Рисунок 1.3 – Значек осциллографа

А и В с раздельной регулировкой чувствительности в диапазоне от 10 МкВ/дел (μV/DIV) до 5 кВ/дел (KV/DIV) и регулировкой смещения по вертикали (YPOS). Входы каналов могут быть закрытыми (АС – сигналы переменного тока), открытыми DC – сигналы с постоянной составляющей) или замкнуты на землю (0).

Двойным щелчком по значку осциллографа раскрывается передняя панель, которая имеет вид (рисунок 1.4).

Рисунок 1.4 – Передняя панель осциллографа

Здесь открыт доступ к регулировкам осциллографа. В блоке развертки

устанавливается режим развертки кнопками (рисунок 1.5).

Рисунок 1.5 – Кнопки установки развертки

В режиме Y/T (обычный режим, включен по умолчанию) по вертикали – напряжение, по горизонтали – время; в режиме B/A - по вертикали – сигнал канала B, по горизонтали – сигнал канала A; в режиме A/B – наоборот. В режиме Y/T длительность развертки может быть задана в диапазоне от 0,1 нс/дел (ns/div) до 1с/дел (s/div) с возможностью установки смещения по оси X (X POS). Предусмотрен также ждущий режим (TRIGGER) с запуском по

переднему или заднему фронту (рисунок 1.6):

Рисунок 1.6 – Кнопки установки запуска ждущего режима

Регулируемый уровень (LEVEL) запуска и режим AUTO, от канала A или B или внешнего источника (EXT).

При нажатии кнопки EXPAND лицевая панель существенно меняется – увеличивается размер экрана, появляется возможность прокрутки изображения по горизонтали и его сканирования с помощью вертикальных визирных линий, которые за треугольные ушки можно установить в любое место экрана. При этом в индикаторных окошках под экраном приводятся результаты измерения напряжения, временных интервалов и их приращений между визирными линиями. Изображение можно инвертировать нажатием кнопки REVERSE и

записать данные в файл нажатием кнопки SAVE. Возврат к исходному состоянию – нажатием кнопки REDUCE в правом нижнем углу лицевой панели осциллографа.

Измеритель АЧХ и ФЧХ (Bode Plotter). Условное изображение (значок) измерителя имеет вид (рисунок 1.7).

Рисунок 1.7 – Значок измерителя АЧХ и ФЧХ

Подключение к исследуемой схеме осуществляется с помощью зажимов IN(вход) иOUT(выход). Левые клеммы зажимов подключают соответственно ко входу и выходу устройства, а правые – к общей шине. Двойным щелчком по

значку раскрывается передняя панель измерителя и открывается доступ к настройке прибора (рисунок 1.8).

Рисунок 1.8 – Передняя панель измерителя АЧХ и ФЧХ

Измеритель предназначен для анализа АЧХ (нажата кнопка MAGNITUDE) и ФЧХ (нажата кнопка PHASE) при логарифмической (кнопка LOG, включена по умолчанию) или линейной (кнопка LIN) шкале по осям Y (VERTICAL) и X (HORIZONTAL).

Настройка измерителя заключается в выборе пределов измерения коэффициента передачи и вариации частоты с помощью кнопок в окошках F – максимальное и I – минимальное значение.

Частота и соответствующее значение коэффициента передачи или фазы индицируются в окошках в правом нижнем углу измерителя. Значения этих величин в отдельных точках АЧХ и ФЧХ можно получить с помощью вертикальной визирной линии, находящейся в исходном состоянии в начале координат и перемещаемой по графику мышью или кнопками (рисунок 1.9).

Рисунок 1.9 – Кнопки перемещения вертикальной визирной линии

Результаты измерения можно записать в текстовый файл. Для этого необходимо нажать кнопку SAVE и в диалоговом окне указать имя файла (по умолчанию предполагается имя схемного файла). В полученном таким образом текстовом файле (с расширением .bod) АЧХ и ФЧХ представляются в табличном виде.

Функциональный генератор (Function Generator). Условное изображение (значка) генератора имеет вид (рисунок 1.10).

Рисунок 1.10 – Значок функционального генератора

При заземлении клеммы COM (общий) на выходах «– « и « + « получаем парафазный сигнал.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]