Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции математика.doc
Скачиваний:
215
Добавлен:
09.04.2015
Размер:
5.22 Mб
Скачать

2.6. Условия параллельности и перпендикулярности прямых

Прямые, заданные общими уравнениями: ивзаимно перпендикулярны тогда и только тогда, когдаДанные прямые параллельны тогда и только тогда, когда

Прямые на плоскости, заданные в виде: иперпендикулярны только том случае, когда(при). Данные прямые параллельны тогда и только тогда, когда их угловые коэффициенты равны, т. е.

Прямые, заданные своими каноническими уравнениями: ивзаимно перпендикулярны тогда и только тогда, когдаДанные прямые параллельны, если только выполнено условие:

2.7. Точка пересечения непараллельных прямых

Если на плоскости заданы две прямые: и, то согласно утверждению 2 координатыточки пересечения этих прямых можно вычислить по формулам:

(21)

(22)

Лекция 10. Прямая в пространстве

  1. Общее уравнение прямой

направляющий вектор прямой

  1. Каноническое уравнение прямой

  1. Параметрические уравнения прямой

  1. Уравнение прямой проходящей через 2 данные точки

  1. Угол между прямыми и

6.

илежат в одной плоскости

Прямая и плоскость в пространстве

  1. Угол между прямой L и плоскостью

2.

L- лежит в плоскости

3. если

4.

Лекция 11. Кривые второго порядка

Кривой второго порядка называется геометрическое место точек, задаваемых уравнением: . В зависимости от вида этой кривой уравнение можно привести к одному из канонических, задающему кривую, принадлежащую одному из классов.

Классификация кривых второго порядка

Невырожденные Вырожденные

Эллипс

Гипербола

Парабола

Точка (0;0)

Пара пересекающихся прямых

Пара совпадающих прямых

Пара параллельных прямых

Каноническое уравнение

Каноническое уравнение

Каноническое уравнение

Каноническое уравнение

Каноническое уравнение

Каноническое уравнение или

Каноническое уравнение

Признак вырожденности кривой: уравнение можно представить в виде произведения двух сомножителей.

Эллипс

Кривая второго порядка, заданная каноническим уравнением , называется эллипсом.a,b – полуоси эллипса. Если , то a- большая полуось, b- малая полуось.

Построение эллипса, заданного каноническим уравнением . Пусть уравнение эллипса имеет вид. Построим прямыеx=6 и y=3. Точки пересечения данных прямых с осями координат принадлежат эллипсу. Соединим их плавной кривой, получим искомый график. Обычно эллипс определяется как геометрическое место точек, сумма расстояний от которых до фокусов эллипса является величиной постоянной и равной 2a. Координаты фокуса из уравнения эллипса находятся по формулам если в уравнении . Если , то фокусы имеют координаты (эллипс ориентирован вертикально).

Оптическое свойство эллипса состоит в том, что если точечный источник света поместить в один фокус эллипса, то в другом фокусе появится его изображение.

Эксцентриситет эллипса – степень его вытянутости - отношение расстояния от центра эллипса до фокуса к его большой полуоси, вычисляется по формуле . Для эллипса в общем случае>1, если , то эллипс превращается в окружность. Для эллипса, задаваемого уравнением эксцентриситет, а фокусы находятся в точках.

Окружность – частный случай эллипса, задается уравнением , гдеR – радиус окружности. У окружности 0, а фокусы совпадают с центром ( началом координат).

Гипербола

Гипербола – кривая, задаваемая каноническим уравнением или.a,b – полуоси гиперболы. Действительной называется та полуось, около которой в уравнении стоит знак «+». Прямые - асимптоты гиперболы (график стремится к ним, но никогда не достигает).

Построение гиперболы

Построение гиперболы, заданной уравнением начинаем с отложения по оси Ox отрезка длиной a единиц, а по оси Oy – длиной b единиц. Строим прямые и . Гипербола будет касаться полученного прямоугольника в двух точках . Проведем прямые- асимптоты гиперболы. Возьмем еще пару точек для более точного выяснения формы кривой (чем больше точек, тем лучше). Вид кривой (для примера взята гипербола, заданная уравнением) представлен на рисунке. Если в уравнении гиперболыпоменять знаки передx и y, то получим сопряженную ей гиперболу , которая имеет те же асимптоты.

Так же как и эллипс, гиперболу можно определить как геометрическое место точек, разность расстояний которых от фокусов постоянна. Фокусы гиперболы имеют координаты , где (значенияa,b берутся из уравнения гиперболы). Гипербола, сопряженная данной, будет иметь фокусы в точках .

Оптическое свойство гиперболы состоит в том, что если источник света поместить в один фокус гиперболы, то из бесконечно удаленной точки он будет виден так, как будто он находится во втором фокусе.

Эксцентриситет гиперболы – степень ее вытянутости. Для гиперболы (в общем случае >1) , задаваемой уравнением эксцентриситет, а фокусы находятся в точках.

Парабола

Параболой называется кривая второго порядка, задаваемая каноническим уравнением вида или, гдеp – параметр параболы. В зависимости от вида уравнения и значения параметра ветви параболы могут быть направлены:

  • Вверх, в случае если уравнение имеет вид приp>0.

  • Вниз, в случае если уравнение имеет вид приp<0.

  • Вправо, в случае если уравнение имеет вид приp>0.

  • Влево, в случае если уравнение имеет вид приp<0.

Параболу можно определить как геометрическое место точек, равноудаленных от точки - фокуса - и прямой - директрисы.

Оптическое свойство параболы состоит в том, что если в фокус параболы поместить точечный источник света, то из нее будет выходить параллельный пучок лучей.

Приведение уравнений кривых второго порядка к каноническому виду.

Общее уравнение кривой , причем примем ( для упрощения расчетов)B=0. Существуют два метода преобразования уравнения общего вида к каноническому:

  1. Выделение полного квадрата

  2. Замена переменной

Для данного уравнения замену удобно ввести замену в виде:

, где x и y – новые переменные.

Если A и C не равны 0, то - новый центр кривой второго порядка, аx и y - новые оси.

Пример:

1. Кривая второго порядка задана уравнением . Выяснить, чему оно соответствует.

Данному уравнению соответствует окружность со смещенным центром, имеющая каноническое уравнение , где (x0;y0) – координаты центра окружности, а R – ее радиус. Воспользуемся методом выделения полного квадрата для нахождения канонического вида уравнения.

Итак, данное уравнение соответствует окружности радиуса 2 ед. с центром в точке (2;0).

  1. Привести уравнение к каноническому виду и построить кривую:

Воспользуемся методом замены переменных. Имеем:

Получилось каноническое уравнение эллипса с центром в точке (1;-2). Строим его по вышеописанному алгоритму.

  1. Привести к каноническому виду уравнение . Построить кривую, заданную вышеописанным уравнением.

Используем метод выделения полного квадрата и замены переменной.

Получилось уравнение параболы с центром в точке (-2;2)