Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Гистология

.pdf
Скачиваний:
10026
Добавлен:
31.03.2015
Размер:
45.04 Mб
Скачать

ют дальше, образуя кортикальные пластинки — скопления клеток, из которых формируется кора большого мозга и мозжечка.

По мере дифференцировки нейробласта изменяется субмикроскопическое строение его ядра и цитоплазмы. В ядре возникают участки различной электронной плотности в виде мелких зерен и нитей. В цитоплазме выявляются в большом количестве канальцы и цистерны гранулярной эндоплазматической сети, уменьшается количество свободных рибосом и полисом, значительного развития достигает аппарат Гольджи. Специфическим признаком начавшейся специализации нервных клеток следует считать появление в их цитоплазме тонких фибрилл — пучков нейрофиламентов и микротрубочек. Количество нейрофиламентов, содержащих белок — нейрофиламентный триплет, в процессе специализации увеличивается. Тело нейробласта постепенно приобретает грушевидную форму, а от его заостренного конца начинает развиваться отросток — аксон (нейрит). Позднее дифференцируются другие отростки — дендриты. Нейробласты превращаются в зрелые нервные клетки — нейроны. Между нейронами устанавливаются контакты (синапсы).

В процессе дифференцировки нейронов из нейробластов различают домедиаторный и медиаторный периоды (см. рис. 130, Б). Для домедиаторного периода характерно постепенное развитие в теле нейробласта органелл синтеза — свободных рибосом, а затем эндоплазматической сети. В медиаторном периоде у юных нейронов появляются первые пузырьки, содержащие медиатор, а в дифференцирующихся и зрелых нейронах отмечаются значительное развитие органелл синтеза и секреции (гранулярная эндоплазматическая сеть, аппарат Гольджи), накопление медиаторов и поступление их в аксон, образование синапсов. Несмотря на то что формирование нервной системы завершается в первые годы постнатального развития, известная пластичность центральной нервной системы сохраняется до старости. Эта пластичность может выражаться в появлении новых терминалей и новых синаптических связей. Нейроны центральной нервной системы млекопита-

ющих способны формировать новые ветви

( а к с о н а л ь н о е

п о ч к о в а -

ние) и новые синапсы ( с и н а п т и ч е с к о е

замещение) .

Пластичность

проявляется в наибольшей степени в первые годы после рождения, но частично сохраняется и у взрослых — при изменении уровней гормонов, обучении новым навыкам, травме и других воздействиях. Хотя нейроны постоянны, их синаптические связи могут модифицироваться в течение всей жизни, что может выражаться, в частности, в увеличении или уменьшении их числа. Пластичность при малых повреждениях мозга проявляется в частичном восстановлении функций.

В популяции нейронов, начиная с ранних стадий развития нервной системы и в течение всего онтогенеза, имеет место массовая гибель клеток, достигающая 25—75 % всей популяции. Эта запрограммированная физиологическая гибель клеток (апоптоз) наблюдается как в центральной, так и в периферической нервной системе; при этом мозг теряет около 0,1 % нейронов. У человека ежегодно погибает около 10 млн нервных клеток.

Нейроны

Нейроны, или нейроциты (neuronum, neurocytes), — специализированные клетки нервной системы, ответственные за рецепцию, обработку (про-

272

цессинг) стимулов, проведение импульса и влияние на другие нейроны, мышечные или секреторные клетки. Нейроны выделяют нейромедиаторы и другие вещества, передающие информацию. Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптический контакт с другими нейронами, образуя рефлекторные дуги — звенья цепи, из которой построена нервная система. В зависимости от функции в рефлекторной дуге различают рецеп - торные (чувствительные, афферентные), а с с о ц и а т и в н ы е и э ф ф е - рентные (эффекторные) нейроны. Афферентные нейроны воспринимают импульс, эфферентные передают его на ткани рабочих органов, побуждая их к действию, а ассоциативные осуществляют связь между нейронами.

Нейроны отличаются большим разнообразием форм и размеров. Диаметр тел клеток-зерен коры мозжечка 4—6 мкм, а гигантских пирамидных нейронов двигательной зоны коры большого мозга — 130—150 мкм. Обычно нейроны состоят из тела (перикариона) и отростков: аксона и различного чисЬа ветвящихся дендритов. По количеству отростков различают у н и п о л я р н ы е нейроны, имеющие только аксон (у высших животных

и человека обычно не встречаются),

б и п о л я р н ы е , имеющие аксон и

один дендрит, и м у л ь т и п о л я р н ы е ,

имеющие аксон и много дендритов

(рис. 131, 132). Иногда среди биполярных нейронов встречается псевдо - у н и п о л я р н ы й , от тела которого отходит один общий вырост — отросток, разделяющийся затем на дендрит и аксон. Псевдоуниполярные нейроны присутствуют в спинальных ганглиях, биполярные — в органах чувств. Большинство нейронов мультиполярные. Их формы чрезвычайно разнообразны. Аксон и его коллатерали оканчиваются, разветвляясь на несколько веточек, называемых телодендронами (telodendron), последние заканчиваются терминальными утолщениями.

Трехмерная область, в которой ветвятся дендриты одного нейрона, называется дендритным полем.

В нейроне различают часть, специализированную на рецепции стимулов, дендриты и тело — перикарион, трофическую часть (тело нейрона) и проводящую, передающую импульс (аксон).

Дендриты представляют собой истинные выпячивания тела клетки. Они содержат те же органеллы, что и тело клетки: глыбки хроматофильной субстанции (гранулярный эндоплазматический ретикулум и полисомы), митохондрии, большое количество нейротубул (микротрубочек) и нейрофиламентов. За счет дендритов рецепторная поверхность нейрона увеличивается в 1000 и более раз. Так, дендриты грушевидных нейронов (клеток Пуркинье) коры мозжечка увеличивают площадь рецепторной поверхности от 250 мкм2 до 27 000 мкм2, и на поверхности этих клеток обнаруживается до 200 000 синаптических окончаний. Аксон — отросток, по которому импульс передается от тела клетки. Он содержит митохондрии, нейротубулы и нейрофиламенты, а также агранулярный эндоплазматический (но не гранулярный) ретикулум.

Ядро нейрона . Подавляющее большинство нейронов человека содержит одно ядро, расположенное чаще в центре, реже — эксцентрично. Двуядерные и тем более многоядерные нейроны встречаются крайне редко. Исключение составляют нейроны некоторых ганглиев вегетативной нервной системы; например, в предстательной железе и шейке матки иногда встречаются нейроны, содержащие до 15 ядер. Форма ядер нейронов округлая. В

273

Л и з о с о мы участвуют в ферментативном расщеплении компонентов клетки рецепторов и мембран, часть из которых может рециркулировать.

Возрастные изменения нейронов сопровождаются накоплением липофусцина, разрушением крист митохондрий. Липофусцин — «пигмент старения» — желто-бурого цвета липопротеидной природы, представляющий собой остаточные тельца (телолизосомы) с продуктами непереваренных структур (см. рис. 134, Г).

Из элементов ц и т о с к е л е т

а в цитоплазме нейронов присутствуют

н е й р о ф и л а м е н т ы диаметром

12 нм и нейротубулы диаметром 24—

27 нм. Пучки нейрофиламентов на препаратах, импрегнированных серебром, видны на уровне световой микроскопии в виде нитей — н е й р о ф и б - рилл, которые являются по существу артефактом (см. рис. 134, В). Нейрофибриллы образуют сеть в теле нейрона, а в отростках расположены параллельно. Нейротубулы и нейрофиламенты участвуют в поддержании формы клеток, росте отростков и аксональном транспорте.

А к с о н а л ь н ы й т р а н с п о р т (аксоплазматический транспорт) — это перемещение веществ от тела в отростки и от отростков в тело нейрона. Он направляется нейротубулами, в транспорте участвуют белки — кинезин и динеин. Транспорт веществ ортела клетки в отростки называется антероградным, к телу — ретроградным. Аксональный транспорт представлен двумя главными компонентами: быстрым компонентом (400—2000 мм в день) и медленным (1—2 мм в день). Обе транспортные системы присутствуют как в аксонах, так и в дендритах.

А н т е р о г р а д н а я б ы с т р а я с и с т е м а проводит мембранозные структуры, включая компоненты мембраны, митохондрии, пузырьки, содержащие пептиды,

предшественники нейромедиаторов

и другие белки.

Р е т р о г р а д н а я

б ы с т р а я

с и с т е м а

проводит использованные

материалы для

деградации в лизосомах,

рас-

пределения

и рециркуляции и, возможно, факторы

роста

нервов. Нейротубулы —

органеллы,

ответственные за быстрый транспорт, который

называется

также

н е й -

р о т у б у л о з а в и с и м ы м. Когда нейротубулы разрушены,

быстрый транспорт

пре-

кращается. Каждая нейротубула содержит несколько путей, вдоль которых движутся различные частички. АТФ и Са2+ обеспечивают эти движения. На одной микротубуле пузырьки могут обгонять другие пузырьки, движущиеся в том же направлении. Два пузырька могут двигаться в противоположных направлениях одновременно по

различным путям

одной нейротубулы.

М е д л е н н ы й

т р а н с п о р т — это антероградная система, проводящая белки

и другие вещества для обновления и поддержания аксоплазмы (цитозоля) зрелых нейронов и обеспечения аксоплазмой роста аксонов и дендритов при развитии и регенерации.

Аксональный транспорт есть выражение единства нейронов. Благодаря ему поддерживается постоянная связь между телом клетки (трофическим центром) и отростками. С его помощью тело клетки информировано о метаболических потребностях и условиях дметальных частей. При поглощении экстрацеллюлярных веществ, таких как фактор роста нервов с последующим ретроградным транспортом, тело клетки может «оценивать» окружающую среду. Однако ретроградный транспорт имеет отрицательное свойство. С ним нейротропные вирусы, такие как вирус бешенства, доставляются в центральную нервную систему. Дефект нейротубул может быть причиной некоторых неврологических нарушений у человека.

278

Секреторные нейроны

Способность синтезировать и секретировать биологически активные вещества, в частности медиаторы (ацетилхолин, норадреналин, серотонин и др.), свойственна всем нейроцитам. Однако существуют нейроциты, специализированные преимущественно для выполнения этой функции, — сек - реторные н е й р о н ы (neuronum secretorium), например клетки нейросекреторных ядер гипоталамической области головного мозга. Секреторные нейроны имеют ряд специфических морфологических признаков. Это крупные нейроны. Хроматофильная субстанция преимущественно располагается по периферии тела клеток. В цитоплазме нейронов и в аксонах находятся различной величины гранулы секрета — нейросекрета (substantia neurosecretoria), содержащие белок, а в некоторых случаях липиды и полисахариды. Гранулы нейросекрета выводятся в кровь или мозговую жидкость. Многие секреторные нейроны имеют ядра неправильной формы, что свидетельствует об их высокой функциональной активности. Нейросекреты выполняют роль нейрорегуляторов, участвуя во взаимодействии нервной и гуморальной систем интефации.

Нейроглия

Нейроны — высокоспециализированные клетки, существующие и функционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия (neuroglia). Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Различают глию центральной и периферической нервной системы (рис. 136, 137, 138).

Глия центральной нервной системы. Клетки глии центральной нервной системы делятся на макроглию (глиоциты) и микроглию. Макроглия развивается из глиобластов нервной трубки. К макроглии относятся эпендимоциты, астроциты и олигодендроглиоциты.

Макроглия

Эпендимоциты (ependymocyti) выстилают желудочки головного мозга и центральный канал спинного мозга (рис. 139). Эти клетки цилиндрической формы. Они образуют слой типа эпителия. Между соседними клетками имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между ними в нервную ткань. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань, и почти лишены ресничек. Такие клетки называются таницитами. Они многочисленны в дне III желудочка. Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза. Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость. Цитоплазма эпендимоцитов содержит многочисленные митохондрии, аппарат Гольджи, распо-

279