Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lab_new_1.doc
Скачиваний:
179
Добавлен:
29.03.2015
Размер:
6.11 Mб
Скачать

3.2. Средства для измерения давления

В практике теплотехнического эксперимента различается абсолютное, избыточное и вакуумметрическое давление.

Абсолютное давление есть полное давление, испытываемое газом или жидкостью, равное сумме избыточного давления () и атмосферного(барометрического) давлений:

. (3.3)

Если барометрическое давление меньше атмосферного, то его определяют как разность между атмосферным и вакуумметрическим давлениями:

. (3.4)

Приборы, предназначенные для измерения избыточного давления, называются манометрами, для измерения атмосферного давления – барометрами, для измерения вакуума – вакуумметрами. Для измерения разности давлений используют дифференциальные манометры (дифманометры). Манометры, измеряющие малые давления, называются микроманометрами. В Международной системе единиц (СИ) единицей давления является, Паскаль (Па). Паскаль равен давлению, вызываемому силой в 1 Н, равномерно распределенной по поверхности площадью 1 м2, расположенной перпендикулярно направленнию силы (1 Па = 1 Н/м2). С целью сокращения числа значащих цифр используют также кратные единицы от единиц СИ, например 1 МПа = 106 Па, 1 кПа = 103 Па. На некоторых предприятиях используются также внесистемные единицы давления: техническая атмосфера (ат), равная 1 кгс/см2; миллиметр водного столба (мм. вод. ст.) и миллиметр ртутного столба (мм. рт. ст.), отнесенные к следующим условиям: для воды к 4°С , для ртути к 0°С и ускорению свободного падения, равному 9.80665 м/с2.

Соотношения между единицами давления приведены в таблице Б.1 приложения Б.

Для измерения небольших избыточных давлений и разряжений используются U-образные жидкостные манометры (рисунок 3.9).

Рисунок 3.9 – Жидкостный U-образный манометр: 1 – стеклянная трубка; 2 – рабочая жидкость (вода); 3 – шкала; ,– соответственно атмосферное и избыточное давление; 4 – положение менисков при;– разность уровней жидкости

В качестве рабочей жидкости чаще всего используется вода (иногда –ртуть, спирт и другие жидкости). Внутренний диаметр стеклянной трубки должен быть не менее 8 мм, так как при меньшем диаметре начинают проявляться капиллярные свойства жидкости. При заполнении U-образного манометра особое внимание следует обращать на чистоту внутренней поверхности трубки и рабочей жидкости, так как загрязнения искажают форму мениска и могут привести к погрешностям измерения. Избыточное давление , измеряемое с помощьюU-образного манометра, можно выразить в миллиметрах столба рабочей жидкости (h, см. рисунок 3.9) или при расчете в системе СИ (Паскалях) по следующей формуле:

(3.5)

где – ускорение свободного падения, м/с2; – разность уровней жидкости, м;– соответственно плотность рабочей жидкости и среды над рабочей жидкостью; кг/м3.

Точность отсчета показаний U-образного манометра невооруженным глазом обычно составляет ±(1…2) мм. столба рабочей жидкости или ±(10…20) Па.

Для измерения малых перепадав давления воздуха используют микроманометры (рисунок 3.10).

Рисунок 3.10 – Микроманометр с наклонной трубкой (спиртовой)

В качестве рабочей жидкости используют этиловый спирт. Разность высот уровней рабочей жидкости уравновешивает измеряемое давление и, согласно схеме (рисунок 3.10), определяется из:

. (3.6)

Если и– это площади сечений наклонной трубки микроманометра и сосуда, то в соответствии с равенством объемов, имеем. Следовательно, избыточное давление (Па), измеряемое микроманометром:

.. (3.7)

Наибольшее распространение при измерении давления от 0 до 1000 МПа получили манометры с трубчатой пружиной. Манометры в зависимости от их назначения подразделяются на образцовые типа МО (манометр образцовый) классов точности 0.16; 0.25 и 0.4; повышенной точности типа МТИ классов точности 0.6 и 1 и технические классов точности 1; 1.6 и 2.5. Манометры образцовые типа МО выпускают с верхним пределом измерен от 0.1 до 60 МПа. На рисунке 3.11 показано устройство манометра с трубчатой пружиной Бурдена.

Рисунок 3.11 – Манометр с одновитковой трубчатой пружиной: 1 – трубчатая пружина Бурдена; 2 – зубчатое колесо; 3 – стрелка; 4 – зубчатый сектор; 5 – поводок; 6 – держатель; 7 – штуцер

Один конец трубчатой пружины 1 закреплен в держателе 6, который снабжен штуцером 7 для соединения с объектом измерения давления. Запаянный конец пружины соединен поводком 5 с передаточным механизмом, состоящим из сектора 4 и зубчатого колесе 2, на оси которого закреплена стрелка 3 манометра. Под влиянием избыточного давления трубчатая пружина деформируется и через секторный передающий механизм поворачивает стрелку манометра. У манометров такого типа угол поворота стрелки практически пропорционален измеряемому давлению, поэтому шкала таких манометров равномерная. Вакуумметры и мановакуумметры с одновитковой трубчатой пружиной имеют аналогичную конструкцию. Применяя приборы с трубчатой пружинной, следует иметь в виду, что в условиях переменной температуры изменяется модуль упругости чувствительного элемента (пружины), что вызывает необходимость введения поправок к показаниям прибора. Кроме того, стабильность показаний рассматриваемых манометров нарушается явлениями гистерезиса и остаточной деформации. В этой связи, манометры следует подвергать проверке и, при необходимости, градуировке не реже одного раза в год. В промышленности и технике нашли применение и манометры других типов. Примером является измерительный комплексTesto, служащий для комплексного измерения параметров воздуха Testo 435. Схема, которого представлена на рисунке 3.12.

Рисунок 3.12 – Общий вид прибора Testo 435: 1 – корпус прибора; 2 – кнопки переключения данных; 3 – кнопка включения; 4 – входы для подключения датчиков давления; 5 – вход для подключения датчика измерения скорости, температуры, влажности

Модели Testo 435-1/-2/-3/-4 используются для измерения скорости, температуры, влажности, содержания СО2, абсолютного давления и объемного расхода воздуха. Модель Testo 435-2 имеет также функцию измерения освещенности, память и программное обеспечение с USB -кабелем для анализа данных на ПК.

Модель Testo 435-3 имеет также встроенный сенсор дифференциального давления для измерения скорости с помощью трубок Пито. Модель Testo 435-4 объединяет все возможности предыдущих моделей.

Технические характеристики прибора Testo 435 представлены в таблице 3.1.

Таблица 3.1_Технические характеристики прибора Testo 435

Параметр

Диапазон измерений

Погрешность

Температура

-200 … +1370°С.

не более ±0,3°С.

Влажность

0 … 100%

не более ±2%

Давление

2000 мбар абс. ±25 мбар

±5 мбар ±1%

Скорость потока

0 … 60 м/с

не более ±3% *

Двуокись углерода СО2

0 … 10000 ppm

± (50 ppm + 2%)

Принцип действия цифрового прибора измерения давления иллюстрируется схемой, показанной на рисунке 3.13.

Рисунок 3.13 – Блочная схема, иллюстрирующая принцип действия цифрового прибора измерения давления: С – стабилизатор; Г – генератор; ИП – индукционный преобразователь; В – выпрямитель; ЧЭ – чувствительный элемент

Измеряемое давление воспринимается упругим чувствительным элементом (ЧЭ), перемещение которого () преобразуется индукционным преобразователем (ИП) в электрический сигнал постоянного тока, пропорциональный измеряемому давлению. Питание индукционного преобразователя осуществляется от генератора (Г), который преобразует постоянное стабилизированное стабилизатором (С) напряжение 9 ± 0.5 В в переменное напряжение с амплитудой порядка 12 вольт и частотой 28 кГц, Выходное напряжение индукционного преобразователя (ИП) выпрямляется выпрямителем (В) и поступает на выходные клеммы прибора в виде напряжения постоянного тока, пропорционального измеряемому давлению. Это напряжение регистрируется вольтметром. Поскольку цифровой прибор измерения давления (например, ИКД-27) предназначен для работы от сети постоянного тока напряжением 27 В, то для его работы необходим блок питания, преобразующий переменный ток (220 В) в постоянный ток (27 В).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]