Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теория ДВС 1.doc
Скачиваний:
462
Добавлен:
28.03.2015
Размер:
939.01 Кб
Скачать

2.1.3. Теоретический цикл двигателей с подводом тепла при постоянном объеме и постоянном давлении (смешанный цикл)

Тракторные и автомобильные двигатели работают по смешанному циклу на дизельном топливе. Для самовоспламенения впрыскиваемого топлива степень сжатия должна быть не ниже 14.

Индикаторная диаграмма теоретического цикла представлена на рис. 2.3.

В теоретическом цикле кривая асдиаграммы изображает адиабатическое сжатие рабочего тела, заключенного в цилиндре,сzиzz' –сообщение теплоты,z'b– адиабатическое расширение иba – отдачу части сообщенной теплоты холодному источнику в соответствии со вторым законом термодинамики.

Рис. 2.3. Индикаторная диаграмма смешанного

теоретического цикла

Значения температуры и давления в конце процесса сжатия аналогичны предшествующим формулам:

; .

Максимальное давление смешанного цикла:

.

Температура в ВМТ равна:

.

Температура в конце процесса подвода теплоты равна:

.

Давление в конце адиабатного расширения равно:

.

Температура в конце адиабатного расширения определяется формулой:

Термический КПД теоретического цикла можно определить по разности количества теплоты: Q1' + Q1'', введенных соответственно при V = const (по изохоре сz) и при р = const (по изобаре zz') иQ2,отданного холодному источнику при V = const (по изохоре ba):

.

Теплота, сообщаемая соответственно по изохоре и изобаре, и отводимая теплота равны

Подставляя Q1', Q1''иQ2в уравнение, определяющее термический КПД смешанного цикла, заменяя все температуры через температуру начала сжатияTа,аналогично предшествующим выводам и учитывая, что

,

получаем

Это уравнение позволяет утверждать, что использование тепла в смешанном цикле зависит от степени сжатия, предварительного расширения и повышения давления, а также показателя адиабаты.

В смешанном цикле повышение степени сжатия улучшает экономические и мощностные показатели. Однако по мере увеличения степени сжатия прирост использования теплоты постепенно замедляется и после значений степени сжатия 10–12 становится малоощутимым. В дизельных двигателях значении степени сжатия больше 15 объясняются желанием облегчить пуск холодных двигателей. При повышении степени сжатия растет температура конца сжатия, что обеспечивает самовоспламенение топлива даже при низких температурах стенок цилиндра и засасываемого воздуха.

2.2. Действительные циклы двс

Действительный (рабочий) цикл, осуществляемый в реальном двигателе внутреннего сгорания, представляет собой разомкнутый цикл. Для изучения действительного (рабочего) цикла нужно рассмотреть весь комплекс сложных процессов, связанных с превращением термохимической энергии топлива в механическую работу в реальном двигателе. Исходными для изучения действительного (рабочего) цикла являются материалы, полученные в основном путем лабораторных испытаний двигателей внутреннего сгорания.

2.2.1. Рабочие тела и их свойства

В поршневых двигателях внутреннего сгорания рабочее тело состоит из окислителя, топлива и продуктов его сгорания. Окислителем для большинства двигателей служит атмосферный воздух, содержащий 21 % (по объему) кислорода и 79 % инертных газов, в основном азота. При реализации цикла рабочее тело претерпевает физические и химические изменения. В зависимости от типа двигателя, в период впуска в цилиндр поступает либо воздух, либо горючая смесь, состоящая из газообразного или жидкого топлива и воздуха. Воздух или горючую смесь, поступающие в цилиндр и остающиеся в нем к моменту начала сжатия, называют свежим зарядом. В процессе сжатия в цилиндре находится смесь свежего заряда с остаточными газами, которая называетсярабочей. В процессе расширения и выпуска рабочим телом являютсяпродукты сгорания топлива.

При расчете рабочего цикла двигателя необходимо знать низшую теплоту сгорания топлива, которая зависит от композиционного состава топлива и количественного соотношения элементов, составляющих его горючую часть. Подвод теплоты к рабочему телу в действительном цикле осуществляется в результате сгорания топлива непосредственно в цилиндре двигателя, что предъявляет определенные требования к физическим и химическим свойствам топлива, которые приведены в таблице 2.1.

 

 

 

 

 

Таблица 2.1

Характеристики жидких топлив для двигателей внутреннего сгорания

Топливо

Элементарный состав (средний) 1 кг топлива, кг

Молекулярная масса, mT,

Кг/кмоль

Низшая теплота сгорания, hu,

MДж/кг

С

Н

0Т

Автомобильные бензины

Дизельное

0.855

 

0.870

0.145

 

0.126

 

0.004

110–120

 

180–200

44

 

42.5

Сгорание топлива в цилиндрах двигателя протекает согласно следующим реакциям:

; .

Количество кислорода, необходимое для полного сгорания топлива, можно подсчитать следующим образом:

Для топлива, имеющего состав по весу:

весовое количество кислорода, необходимое для полного сгорания 1 кг топлива, составит:

, или

или, исчисляя в кмоль,

.

При расчете состав сухого атмосферного воздуха принимают равным: в % по весу О – 23, N – 77, а в % по объему О – 21, N – 79.

Тогда теоретически необходимое количество сухого атмосферного воздуха для полного сгорания 1 кг жидкого топлива может быть определено по следующим формулам:

В весовом выражении

В молярном выражении

.

Связь между l0 иL0 имеет вид:

.

Сгорание топлива в двигателе обычно происходит при некотором недостатке или некотором избытке воздуха по сравнению с теоретически необходимым количеством.

Отношение количества воздуха L(l)в горючей смеси к количеству воздухаL0 (l0), которое необходимо для полного сгорания топлива, называетсякоэффициентом избытка воздуха:

При работе двигателя состав горючей смееи изменяется. Горючую смесь принято называть нормальной, если α = 1, бедной, если α > 1 и богатой, если α < 1.

Коэффициент избытка воздуха находится в следующих пределах: для карбюраторных двигателей α = 0.8–1.3, для дизельных – α = 1.2 – 5.

Количество свежего заряда, приходящегося на 1 кг топлива, составляет:

для карбюраторного двигателя

[кг воздуха / кг топл.]

или

[кмоль воздуха / кг топл.],

где тТмолекулярная масса топлива.

Для дизельного двигателя

[кг воздуха / кг топл.]

или

[кмоль воздуха / кг топл.].

Молекулярная масса автомобильного бензина тТ=114. Поэтому величиной обычно пренебрегают.

В конце сжатия перед сгоранием цилиндр двигателя заполнен рабочей смесью, количество которой равно:

,

где Мr- количество кмолей остаточных газов.

Отношение количества остаточных газов к действительному количеству свежего заряда называетсякоэффициентом остаточных газов:

.

Подставив выражение в выражение дляМа, получим:

.

Процесс сгорания сопровождается тепловыми потерями. Часть тепла в процессе сгорания передается в охлаждающую среду через стенки цилиндра. Часть топлива проникает в картер через неплотности поршневых колец. Из-за недостатка времени и несовершенства смесеобразования часть топлива не успевает сгореть и догорает во время расширения. В то же время под влиянием высоких температур происходит расщепление молекул Н2О и CO2продуктов сгорания, расщеплению сопутствует поглощение тепла.

Коэффициентом использования тепла называется часть теплотворной способности топлива, которая действительно используется для повышения энергии газов при сгорании:

,

где: huнизшая теплотворная способность топлива;

Δ Q– потери тепла в процессе сгорания.

Коэффициент использования тепла всегда меньше единицы. Он тем выше, чем совершеннее смесеобразование, выше скорость распространения пламени, короче промежуток времени, затрачиваемый на сгорание.

Коэффициент использования тепла, в зависимости от режима работы двигателя, изменяется в карбюраторных двигателях в пределах 0.85–0.95, в дизельных от 0.7 до 0.9.

При полном сгорании жидкого топлива, когда α≥ 1, образуются следующие основные продукты сгорания: CO2и Н2О – продукты полного сгорания углерода и водорода, содержащихся в топливе, N2– азот воздуха и O2– свободный кислород воздуха.

Суммарное количество продуктов сгорания 1 кг топлива равно:

.

Подставив в правую часть уравнения значения слагаемых:

получим:

В процессе сгорания происходит увеличение количества кмоль газов.

.

Это увеличение зависит от состава топлива и коэффициента избытка воздуха.

Для карбюраторных ДВС

Для дизельных ДВС

Отношение количества кмоль продуктов сгорания М2к количеству кмоль смеси до сгоранияМ1называетсякоэффициентом молекулярного изменения.

В зависимости от того, учитывается ли при вычислении коэффициента молекулярного изменения количество остаточных газов или нет, различают коэффициент молекулярного изменения горючей смеси

и коэффициент молекулярного изменения рабочей смеси.

или.

Следовательно, у карбюраторных и дизельных двигателей коэффициент молекулярного изменения всегда больше единицы.

Увеличение количества кмолей газов при сгорании, оцениваемое коэффициентом молекулярного изменения, вызывает увеличение полезной работы при расширении продуктов сгорания в цилиндре, что повышает мощность двигателя. Следовательно, чем выше коэффициент молекулярного изменения, тем больше мощность, развиваемая двигателем.

Средняя мольная изохорная теплоемкость заряда в конце сжатия для карбюраторных и дизельных двигателях может быть определена по следующей формуле:

кДж/кмоль ·К.

Средняя молекулярная теплоемкость продуктов сгорания определяется по формуле (кДж/кмоль К):

процесс сгорания при V = const

;

процесс сгорания при p = const

.