Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теория ДВС 1.doc
Скачиваний:
462
Добавлен:
28.03.2015
Размер:
939.01 Кб
Скачать

2.1.1. Теоретический цикл двигателей с подводом теплоты при постоянном объеме

Автомобильные карбюраторные двигатели, а также двигатели газогенераторные, газобаллонные и с впрыском легкого топлива работают по циклу, в котором горючая смесь, вошедшая в цилиндр во время впуска, сжимается, поджигается искрой и быстро сгорает в момент нахождения поршня около ВМТ, т. е. при почти неизменяемом объеме.

Индикаторная диаграмма теоретического цикла показана на рис. 2.1.

Рис. 2.1. Индикаторная диаграмма теоретического цикла с подводом теплоты при постоянном объеме

Теоретический цикл с сообщением тепла при постоянном объеме осуществляется следующим образом. При движении поршня от НМТ (точка адиаграммы теоретического цикла) газ, заполняющий цилиндр, начинает сжиматься. Чтобы довести потери тепла до минимума, стенки цилиндра должны быть абсолютно нетеплопроводными, т. е. покрытыми идеальной тепловой изоляцией. В этом случае процесс сжатия (линияас индикаторной диаграммы) будет адиабатическим, а внешняя механическая работа, затрачиваемая на сжатие, полностью пойдет на увеличение внутренней энергии сжимаемого газа.

Давление газа в цилиндре в конце процесса сжатия (точка с) равно:

,

где k – показатель адиабаты идеального газа.

Температура газа в цилиндре в конце процесса сжатия (точка с) равна:

.

В конце сжатия, с приходом поршня в ВМТ, происходит не процесс сгорания, как в действительном цикле, а простое мгновенное сообщение теплоты Q1рабочему телу; результатом этого будет повышение его температуры и давления при постоянном объеме (изохорысz). При положении поршня в ВМТ (точкаzдиаграммы) сообщение теплоты прекращается.

Степень повышения давления газа в цилиндре в конце процесса подвода теплоты

,

где Pz– давление газа в цилиндре в конце процесса подвода теплоты.

Температура газа в цилиндре в конце процесса подвода теплоты (точка z)

.

Затем газ адиабатически расширяется, его внутренняя энергия частично превращается во внешнюю механическую работу. В НМТ (точка bдиаграмм) процесс расширения, графически изображенный адиабатойzb,заканчивается.

Давление газа в цилиндре в конце процесса расширения

.

Температура газа в цилиндре в конце процесса расширения

.

Для повторения цикла надо вернуть газ в начальное состояние, характеризуемое точкой aиндикаторной диаграммы. Для этого необходимо охладить газ, заключенный в цилиндре, т. е. отнять теплоту, представляющую собой долюQ2от ранее введенной теплотыQ1.Таким образом, даже при осуществлении теоретического цикла часть вводимой теплоты теряется и, следовательно, не может быть полного превращения теплоты в работу.

Степень преобразования теплоты в работу любого теоретического цикла оценивается термическим КПД, который представляет собой отношение теплоты, превращенной в полезную работу газов, к подведенной теплоте Q1.

В теоретическом цикле какие-либо дополнительные тепловые потери, за исключением количества теплоты Q2, отсутствуют.

Поэтому в полезную работу превращается разность количеств теплоты Q1 – Q2, тогда термический КПД можно выразить формулой:

В цикле с сообщением теплоты при постоянном объеме вводимое количество Q1теплоты и отводимоеQ2пропорциональны его изохорной теплоемкостиСνи соответствующим разностям температур:

Термический КПД можно определять, подставив найденные значения температур:

Согласно уравнению термического КПД, экономичность цикла с подводом теплоты при постоянном объеме возрастает при увеличении степени сжатия и показателя адиабаты идеального газа.