Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Генетика человека.docx
Скачиваний:
52
Добавлен:
28.03.2015
Размер:
48.47 Кб
Скачать

Генетика человека изучает явления наследственности и изменчивости на всех уровнях его организации и существования: молекулярном, клеточном, организменном, популяционном, биохорологическом, биогеохимическом.

Клиническая генетика в строгом смысле слова - прикладной раздел медицинской генетики, т.е. применение ее достижений к клиническим проблемам у пациентов или в их семьях: какая болезнь у пациента (диагноз), как ему помочь (лечение), как предупредить рождение больного потомства (прогноз и профилактика). В настоящее время клиническая генетика основывается на геномике, цитогенетике, биохимической генетике, иммуногенетике, формальной генетике, включая популяционную и эпидемиологическую, генетике соматических клеток и молекулярной генетике.

Медицинская генетика изучает роль наследственности в патологии человека, закономерности передачи от поколения к поколению наследственных болезней, разрабатывает методы диагностики, лечения и профилактики наследственной патологии, включая болезни с наследственной предрасположенностью. Это направление синтезирует медицинские и генетические открытия и достижения, направляя их на борьбу с болезнями и улучшение здоровья людей.

Значение генетики для медицины

 изучение наследственных механизмов поддержания гомеостаза организма, обеспечивающих здоровье индивида;  

изучение значения наследственных факторов в этиологии болезней;  

изучение роли наследственных факторов в определении клинической картины болезней;

 диагностика, лечение и профилактика наследственных болезней и т.д.

Профилактика наследственной патологии

Вся наследственная патология определяется грузом мутаций, вновь возникающих и унаследованных из предыдущих поколений.

С профилактической точки зрения всю наследственную патологию целесообразно подразделить на 3 категории: вновь возникающие мутации (в первую очередь это анеуплоидии и тяжелые формы доминантных мутаций); унаследованные от предыдущих поколений (как генные, так и хромосомные); болезни с наследственной предрасположенностью.

Различают 3 вида профилактики наследственной патологии.

Первичная профилактика

Под первичной профилактикой понимают действия, которые должны предупредить зачатие больного ребенка; это планирование деторождения и улучшение среды обитания человека.

Планирование деторождения включает 3 основные позиции:

- оптимальный репродуктивный возраст, который для женщин составляет 21-35 лет (более ранние или поздние беременности увеличивают вероятность рождения ребенка с врожденной патологией и хромосомными болезнями) (см. рис. 5.28);

- отказ от деторождения в случаях высокого риска наследственной и врожденной патологии (при отсутствии надежных методов дородовой диагностики, лечения, адаптации и реабилитации больных);

- отказ от деторождения в браках с кровными родственниками и между двумя гетерозиготными носителями патологического гена.

Улучшение среды обитания человека должно быть направлено главным образом на предупреждение вновь возникающих мутаций путем жесткого контроля содержания мутагенов и тератогенов в окружающей среде. Это особенно важно для профилактики всей группы соматических генетических болезней (врожденные пороки развития, злокачественные новообразования, иммунодефициты и т.п.).

Вторичная профилактика

Вторичная профилактика состоит в прерывании беременности

при высокой вероятности заболевания плода или пренатально диагностированной болезни. Прервать беременность можно только в установленные сроки и с согласия женщины. Основанием для элиминации эмбриона или плода является наследственная болезнь.

Прерывание беременности - не самое лучшее решение, но пока это единственный практически пригодный метод при большинстве тяжелых и смертельных генетических дефектов.

Третичная профилактика

Под третичной профилактикой наследственной патологии понимают коррекцию проявления патологических генотипов.Это можно назвать и нормокопированием, поскольку при патологическом генотипе стремятся получить нормальный фенотип.

Третичная профилактика проводится как при наследственных болезнях, так и (особенно часто) при болезнях с наследственной предрасположенностью. С ее помощью можно добиться полной нормализации функций или снижения выраженности патологического процесса. Для некоторых форм наследственной патологии она может совпадать с лечебными мероприятиями в общемедицинском смысле.

Предотвратить развитие наследственного заболевания (нормокопирование) можно внутриутробно или после рождения.

Для некоторых наследственных заболеваний возможно внутриутробное лечение (например, при резус-несовместимости, некоторых ацидуриях, галактоземии).

Развитие заболевания в настоящее время можно предотвратить путем коррекции (лечения) после рождения больного. Типичными примерами третичной профилактики могут быть галактоземия, фенилкетонурия, гипотиреоз (см. ниже) и др. Например, целиакия проявляется с началом прикорма ребенка манной кашей. В основе болезни лежит аллергия на злаковый белок глютен. Исключение глютена из пищи полностью гарантирует избавление от тяжелейшей патологии ЖКТ.

В генетическом плане можно выделить 5 подходов к профилактике наследственной патологии

Управление экспрессией генов

В середине 20-х годов XX века в экспериментах были обнаружены явления пенетрантности и экспрессивности, которые вскоре стали предметом изучения медицинской генетики. Выше отмечалось, что Н.К. Кольцов сформулировал понятие «евфеника», под которым он понимал формирование хороших качеств или исправление болезненных проявлений наследственности у человека путем создания соответствующих условий (лекарства, диета, воспитание и др.). Эти идеи стали реализовываться только в 60-х годах XX века, когда накопились сведения о первичных продуктах патологического гена и молекулярных механизмах патогенеза наследственных болезней. Зная механизмы действия патологических генов, можно разрабатывать методы их фенотипической коррекции, другими словами, управлять пенетрантностью( частота проявления гена, определяемая по числу особей (в пределах родственной группы организмов), у которых проявляется признак, контролируемый данным геном.) и экспрессивностью(степень выраженности признака, определяемого данным геном. Может меняться в зависимости от генотипа, в который входит данный ген, и от условий внешней среды).

По мере прогресса науки накапливаются сведения о методах профилактики наследственной патологии на разных стадиях онтогенеза - о лечебных или диетических воздействиях. Клиническим примером управления экспрессией генов, уже прошедшим длительную проверку практикой, является предупреждение последствий фенилкетонурии, галактоземии и врожденного гипотиреоза. Клиническая картина этих болезней формируется в раннем постнатальном периоде, в связи с чем принцип третичной профилактики сравнительно простой. Болезнь должна быть диагностирована в течение нескольких дней после рождения, чтобы сразу применить профилактическое лечение, предупреждающее развитие патологического фенотипа (клинической картины). Нормокопирование может достигаться диетическими (при фенилкетонурии, галактоземии) или лекарственными (при гипотиреозе) методами.

Коррекция проявления патологических генов может начинаться с эмбриональной стадии развития. Закладываются основы так называемой преконцепционной и пренатальной профилактики наследственных болезней (в течение нескольких месяцев до зачатия и до родов). Так, например, гипофенилаланиновая диета для матери во время беременности уменьшает проявления фенилкетонурии в постнатальном периоде у ребенка. Отмечено, что врожденные аномалии нервной трубки (полигенный характер наследования) реже встречаются у детей женщин, получающих достаточное количество витаминов. Дальнейшая проверка показала, что если провести лечение женщин в течение 3-6 мес до зачатия и на протяжении первых месяцев беременности гипервитаминной (витамины С, Е, фолиевая кислота) диетой, то вероятность развития у ребенка аномалий нервной трубки существенно уменьшается. Это важно для семей, в которых уже есть больные дети, а также для популяций с высокой частотой патологических генов (например, по врожденным аномалиям нервной трубки - население Ирландии).

В перспективе могут быть разработаны новые методы внутриутробной коррекции патологического проявления генов, что особенно важно для семей, в которых по религиозным соображениям неприемлемо прерывание беременности.

Опыт пренатальной терапии плодов женского пола с дефицитом 21-гидроксилазы может служить отправной точкой для разработки методов лечения других наследственных болезней. Лечение проводится по следующему плану.

Беременным, имеющим риск рождения ребенка с врожденной гиперплазией коры надпочечников, до 10-й недели беременности назначают дексаметазон (20 мкг/кг) независимо от состояния и

пола плода. Дексаметазон подавляет секрецию андрогенов эмбриональными надпочечниками. Одновременно необходимо провести пренатальную диагностику пола плода и ДНК-диагностику мутаций в гене (путем либо биопсии хориона, либо амниоцентеза). Если обнаруживается, что плод мужского пола или что плод женского пола не поражен, то пренатальную терапию прекращают, а если у плода женского пола находят мутации в гомозиготном состоянии, то лечение продолжают до родов.

Пренатальное лечение низкими дозами дексаметазона вряд ли дает побочные эффекты. При наблюдении за детьми до 10-летнего возраста не обнаружено никаких отклонений. У женщин, получающих дексаметазон, наблюдаются небольшие побочные эффекты (колебания настроения, прибавка массы тела, повышение артериального давления, общий дискомфорт), но они согласны переносить эти неудобства ради здоровья дочерей. Положительные результаты лечения женских плодов с дефицитом 21-гидроксилазы существенно перевешивают отрицательные моменты.

Третичная профилактика на основе управления экспрессией генов особенно важна и эффективна для предупреждения болезней с наследственной предрасположенностью. Исключение из среды факторов, способствующих развитию патологического фенотипа, а иногда и обусловливающих его, - прямой путь к профилактике таких болезней.

Профилактике поддаются все моногенные формы наследственной предрасположенности. Это исключение из среды обитания проявляющих факторов, в первую очередь фармакологических средств у носителей недостаточности глюкозо-6-фосфатдегидрогеназы, аномальной псевдохолинэстеразы, мутантной ацетилтрансферазы. Это первичная (врожденная) непереносимость лекарств, а не приобретенная лекарственная болезнь.

Для работы в производственных условиях, провоцирующих болезненные состояния у лиц с мутантными аллелями (например, контакты со свинцом, пестицидами, окислителями), необходимо проводить отбор рабочих в соответствии с установленными принципами.

Хотя профилактика мультифакториальных состояний более сложная, поскольку они вызываются взаимодействием нескольких факторов среды и полигенных комплексов, все же при правильном семейном анализе можно добиться заметного замедления развития болезни и уменьшения ее клинических проявлений в результате исключения действия проявляющих средовых факторов. На этом принципе основана профилактика гипертонической болезни, атеросклероза, рака легких.

Элиминация эмбрионов и плодов с наследственной патологией

Механизмы элиминации нежизнеспособных эмбрионов и плодов отрабатывались эволюционно. У человека это спонтанные аборты и преждевременные роды. Конечно, не все они происходят по причине неполноценности эмбриона или плода; часть из них связана с условиями вынашивания, т.е. с состоянием женского организма. Однако определенно не менее чем в 50% случаев прерванных беременностей у плодов имеются либо врожденные пороки развития, либо наследственные болезни.

Таким образом, элиминация эмбрионов и плодов с наследственной патологией заменяет спонтанный аборт как природное явление. Методы пренатальной диагностики быстро развиваются, поэтому этот профилактический подход получает все большее значение. Установление диагноза наследственного заболевания у плода служит показанием для прерывания беременности.

Процедура пренатальной диагностики и особенно прерывание беременности должны проводиться с согласия женщины. Как указывалось выше, в некоторых семьях по религиозным соображениям беременность не может быть прервана.

Естественный отбор у человека в течение внутриутробного периода позволил американскому эмбриологу Дж. Уоркани в 1978 г. сформулировать концепцию тератаназии. Под термином «тератаназия» понимается естественный процесс просеивания (или отсеивания) плодов с врожденной патологией. Тератаназия может осуществляться путем создания непереносимых условий для плода с патологией, хотя такие условия вполне приемлемы для нормального плода. Эти факторы как бы выявляют патологическое состояние и одновременно вызывают гибель плода. Некоторые экспериментальные доказательства в пользу такой точки зрения уже имеются. Научные разработки могут быть направлены на поиск методов индуцированной селективной гибели плода с патологическим генотипом. Методы должны быть физиологичными для матери и абсолютно безопасными для нормального плода.

Генная инженерия на уровне зародышевых клеток

Профилактика наследственных болезней может быть наиболее полной и эффективной, если в зиготу будет встроен ген, по функции заменяющий мутантный ген. Устранение причины наследственной болезни (а именно это и есть наиболее фундаментальный аспект профилактики) означает достаточно серьезное маневрирование с генетической информацией в зиготе. Это могут быть введение нормального аллеля в геном путем трансфекции (Процесс искусственного введения в бактериальные клетки изолированных молекул фаговой ДНК, приводящий к образованию зрелого фагового потомства; также Т. - процесс искусственного переноса генетической информации в эукариотические клетки с помощью очищенной ДНК.), обратная мутация патологического аллеля, включение нормального гена в работу, если он блокирован, выключение мутантного гена. Сложности этих задач очевидны, но интенсивные экспериментальные разработки в области генной инженерии свидетельствуют о принципиальной возможности их решения. Генно-инженерная профилактика наследственных болезней стала уже не утопией, а перспективой, хотя и неблизкой.

Предпосылки для коррекции генов человека в зародышевых клетках уже созданы. Их можно обобщить в виде следующих положений:

1. Первичная расшифровка генома человека завершена, особенно на уровне секвенирования нормальных и патологических аллелей. Можно надеяться, что для большинства наследственных болезней мутации будут секвенированы (определение последовательности нуклеотидов в гене.) в ближайшие годы. Интенсивно развивается функциональная геномика(раздел генетики, изучающий структуру и функционирование генома разл. организмов с помощью биол., физ.-хим. и компьютерных методов.) , благодаря которой будут известны межгенные взаимодействия.

2. Любые гены человека нетрудно получать в чистом виде на основе химического или биологического синтеза. Интересно, что ген глобина человека был одним из первых искусственно полученных генов.

3. Разработаны методы включения генов в геном человека с разными векторами или в чистом виде путем трансфекции.

4. Методы направленного химического мутагенеза позволяют индуцировать специфические мутации в строго определенном локусе (получение обратных мутаций - от патологического аллеля к нормальному).

5. В экспериментах на разных животных получены доказательства трансфекции отдельных генов на стадии зигот (дрозофила, мышь, коза, свинья и др.). Введенные гены функционируют в организме-реципиенте и передаются по наследству, хотя и не всегда по законам Менделя. Например, ген гормона роста крыс, введенный в геном зигот мышей, функционирует у родившихся мышей. Такие трансгенные мыши значительно больше по размерам и массе тела, чем обычные.

Генно-инженерная профилактика наследственных болезней на уровне зигот разработана пока слабо, хотя выбор способов синтеза генов и способов их доставки в клетки уже достаточно широк. Решение вопросов трансгеноза у человека сегодня упирается не только в генно-инженерные трудности, но и в этические проблемы. Ведь речь идет о композиции новых геномов, которые создаются не эволюцией, а человеком. Эти геномы вольются в генофонд человечества. Какова будет их судьба с генетической и социальной точек зрения, будут ли они функционировать как нормальные геномы, готово ли общество принять на себя последствия неудачных исходов? Сегодня ответить на эти вопросы трудно, а без ответа на них нельзя начинать клинические испытания, поскольку произойдет безвозвратное вмешательство в геном человека. Без объективной оценки эволюционных последствий генной инженерии нельзя применять эти методы у человека (даже с медицинскими целями на стадии зигот). Генетика человека еще далека от полного понимания всех особенностей функционирования генома. Неясно, как геном будет работать после введения в него дополнительной генетической информации, как он будет вести себя после мейоза, редукции числа хромосом, в сочетании с новой зародышевой клеткой и т.п.

Все сказанное выше дало основание специалистам в области биомедицинской этики на международном уровне (ВОЗ, ЮНЕСКО,Совет Европы) временно воздержаться от проведения экспериментов, а тем более от клинических испытаний с трансгенозом зародышевых клеток.