Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции МВ.docx
Скачиваний:
200
Добавлен:
28.03.2015
Размер:
2.9 Mб
Скачать

6. Радиационностойкие материалы

Технический прогресс связан с непрерывным ростом потребления электроэнергии. Ограниченность запасов органического топлива, преодоление энергетического кризиса и приемлемая стоимость производства электроэнергии обусловили необходимость использования атомной энергии и широкомасштабного строительства атомных электростанций (АЭС) во всех развитых странах мира. Ядерная энергетика — это энергетика будущего.

По принципу действия АЭС и тепловые электростанции (ТЭС) мало отличаются друг от друга. На АЭС и ТЭС вода доводится до кипения, и образующийся пар подается на лопасти высокоскоростной турбины, заставляя ее вращаться. Вал турбины соединен с валом генератора, который при вращении вырабатывает электрическую энергию. Различие АЭС и ТЭС состоит в способе нагрева воды до кипения. Если в ТЭС для нагрева воды сжигается уголь или мазут, то в АЭС для этой цели используют тепловую энергию управляемой цепной реакции деления урана.

Таблица 26.2

Воздействие нейтронного облучения на различные материалы

Интегральный поток  быстрых  нейтронов,  нейтрон/см2

Материал

Воздействие  облучения

1014–1015

Политетра­фтор­этилен, поли­метил­мета­кри­лат и целлю­лоза

Снижение прочности при растяжении

1016

Каучук

Снижение эластичности

1017

Органические жидкости

Газовыделение

1018–1019

Металлы

Заметный рост предела текучести

1020

Полистирол

 

Снижение прочности при растяжении

 

Керамические ма­териалы

Уменьшение теплопроводности, плотнос­ти, кристалличности

 

Все пласт­массы

Непригодны для ис­пользования в качестве конструкционного материала

 

Углеродистые  стали

Значительное сниже­ние пластичности, удвоение преде­ла текучести, повы­шение температуры перехода от вязкого разрушения к хрупкому

1020–1021

Коррозионно­стойкие стали

Трехкратное увеличение предела текучести

1021

Алюминиевые сплавы

Снижение пластичности без полного охрупчивания

Радиационная ползучесть сталей проявляется при температуре 300–500 °С, когда роль термической ползучести еще пренебрежимо мала. Один из возможных механизмов радиационной ползучести — механизм переползания, т. е. скольжения дислокаций. Установившаяся скорость радиационной ползучести пропорциональна приложенному напряжению и повреждающей дозе.

Длительная прочность радиационно стойких аустенитных и ферритной сталей иллюстрируется на рис. 26.9. Аустенитные стали имеют достаточно высокую длительную прочность при 670–700 °С за счет легирования Mo, введения Nb, микродобавок В (0,003–0,008 %). Длительная прочность хромистой жаропрочной стали ниже, чем аустенитных, что связано с более высокой диффузионной подвижностью атомов в ОЦК-решетке. Легирование Mo, Nb, V и B увеличивает прочность лишь при 600–650 °С.

Изменение свойств сталей при низких температурах при облучении называют низкотемпературным радиационным охрупчиванием (НТРО). К НТРО склонны ферритные и ферритно-мартенситные стали и в меньшей степени аустенитные коррозионностойкие стали, что связано с особенностями дислокационной структуры и фазовых превращений в феррите.

В области, где температура составляет более 0,55 температуры плавления сталей, наблюдается высокотемпературное радиационное охрупчивание (ВТРО). ВТРО проявляется в необратимом уменьшении относительного удлинения (до 3–5 %) и преобладании межзеренного разрушения.