Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Компьютерно-телекоммуникационные сети

.pdf
Скачиваний:
64
Добавлен:
26.03.2015
Размер:
3.96 Mб
Скачать

191

1.Начальный ограничитель (Start Delimiter, SD) появляется в начале маркера, а также в начале любого кадра, проходящего по сети. Поле представляет собой следующую уникальную последовательность символов манчестерского кода: JK0JK000. Поэтому начальный ограничитель нельзя спутать ни с какой битовой последовательностью внутри кадра.

2.Управление доступом (Access Control) состоит из четырех подполей: РРР, Т, М и RRR, где

РРР - биты приоритета, Т - бит маркера, М - бит монитора, RRR - резервные биты приоритета. Бит Т, установленный в 1, указывает на то, что данный кадр является маркером доступа. Бит монитора устанавливается в 1 активным монитором и в 0 любой другой станцией, передающей маркер или кадр. Если активный монитор видит маркер или кадр, содержащий бит монитора со значением 1, то активный монитор знает, что этот кадр или маркер уже однажды обошел кольцо и не был обработан станциями. Если это кадр, то он удаляется из кольца. Если это маркер, то активный монитор передает его дальше по кольцу. Использование полей приоритетов будет рассмотрено ниже.

3.Конечный ограничитель (End Delimeter, ED) - последнее поле маркера. Так же как и поле начального ограничителя, это поле содержит уникальную последовательность манчестерских кодов JK1JK1, а также два однобитовых признака: I и Е. Признак I (Intermediate) показывает, является ли кадр последним в серии кадров (I=0) или промежуточным (I=1). Признак Е (Error) - это признак ошибки. Он устанавливается в 0 станцией-отправителем, и любая станция кольца, через которую проходит кадр, должна установить этот признак в 1, если она обнаружит ошибку по контрольной сумме или другую некорректность кадра.

Кадр данных и прерывающая последовательность

Кадр данных включает те же три поля, что и маркер, и имеет кроме них еще несколько дополнительных полей. Таким образом, кадр данных состоит из следующих полей:

начальный ограничитель (Start Delimiter, SD);

управление кадром (Frame Control, FC);

адрес назначения (Destination Address, DA);

адрес источника (Source Address, SA);

данные (INFO);

контрольная сумма (Frame Check Sequence, FCS);

конечный ограничитель (End Delimeter, ED);

статус кадра (Frame Status, FS).

Кадр данных может переносить либо служебные данные для управления кольцом (данные МАСуровня), либо пользовательские данные (LLC-уровня). Стандарт Token Ring определяет 6 типов управляющих кадров МАС-уровня. Поле FC определяет тип кадра (MAC или LLC), и если он определен как MAC, то поле также указывает, какой из шести типов кадров представлен данным кадром.

Назначение этих шести типов кадров описано ниже.

1.Чтобы удостовериться, что ее адрес уникальный, станция, когда впервые присоединяется к кольцу, посылает кадр Тест дублирования адреса (Duplicate Address Test, DAT).

2.Чтобы сообщить другим станциям, что он работоспособен, активный монитор периодически посылает в кольцо кадр Существует активный монитор (Active Monitor

Present, AMP).

3.Кадр Существует резервный монитор (Standby Monitor Present, SMP) отправляется любой станцией, не являющейся активным монитором.

4.Резервный монитор отправляет кадр Маркер заявки (Claim Token, CT), когда подозревает, что активный монитор отказал, затем резервные мониторы договариваются между собой, какой из них станет новым активным монитором.

5.Станция отправляет кадр Сигнал (Beacon, BCN) в случае возникновения серьезных сетевых проблем, таких как обрыв кабеля, обнаружение станции, передающей кадры без ожидания маркера, выход станции из строя. Определяя, какая станция отправляет кадр сигнала, диагностирующая программа (ее существование и функции не определяются

192

стандартами Token Ring) может локализовать проблему. Каждая станция периодически передает кадры BCN до тех пор, пока не примет кадр BCN от своего предыдущего (NAUN) соседа. В результате в кольце только одна станция продолжает передавать кадры BCN - та, у которой имеются проблемы с предыдущим соседом. В сети Token Ring каждая станция знает МАС-адрес своего предыдущего соседа, поэтому Beacon-процедура приводит к выявлению адреса некорректно работающей станции.

6.Кадр Очистка (Purge, PRG) используется новым активным монитором для того, чтобы перевести все станции в исходное состояние и очистить кольцо от всех ранее посланных кадров.

Встандарте 802.5 используются адреса той же структуры, что и в стандарте 802.3. Адреса назначения и источника могут иметь длину либо 2, либо 6 байт. Первый бит адреса назначения определяет групповой или индивидуальный адрес как для 2-байтовых, так и для 6-байтовых адресов. Второй бит в 6-байтовых адресах говорит о том, назначен адрес локально или глобально.

Адрес, состоящий из всех единиц, является широковещательным.

Адрес источника имеет тот же размер и формат, что и адрес назначения. Однако признак группового адреса используется в нем особым способом. Так как адрес источника не может быть групповым, то наличие единицы в этом разряде говорит о том, что в кадре имеется специальное поле маршрутной информации (Routing Information Field, RIF). Эта информация требуется при работе мостов, связывающих несколько колец Token Ring, в режиме маршрутизации от источника.

Поле данных INFO кадра может содержать данные одного из описанных управляющих кадров уровня MAC или пользовательские данные, упакованные в кадр уровня LLC. Это поле, как уже отмечалось, не имеет определенной стандартом максимальной длины, хотя существуют практические ограничения на его размер, основанные на временных соотношениях между временем удержания маркера и временем передачи кадра.

Поле статуса FS имеет длину 1 байт и содержит 4 резервных бита и 2 подполя: бит распознавания адреса А и бит копирования кадра С. Так как это поле не сопровождается вычисляемой суммой CRC, то используемые биты для надежности дублируются: поле статуса FS имеет вид АСххАСхх. Если бит распознавания адреса не установлен во время получения кадра, это означает, что станция назначения больше не присутствует в сети (возможно, вследствие неполадок, а возможно, станция находится в другом кольце, связанном с данным с помощью моста). Если оба бита опознавания адреса и копирования кадра установлены и бит обнаружения ошибки также установлен, то исходная станция знает, что ошибка случилась после того, как этот кадр был корректно получен.

Прерывающая последовательность состоит из двух байтов, содержащих начальный и конечный ограничители. Прерывающая последовательность может появиться в любом месте потока битов и сигнализирует о том, что текущая передача кадра или маркера отменяется.

Приоритетный доступ к кольцу

Каждый кадр данных или маркер имеет приоритет, устанавливаемый битами приоритета (значение от 0 до 7, причем 7 - наивысший приоритет). Станция может воспользоваться маркером, если только у нее есть кадры для передачи с приоритетом равным или большим, чем приоритет маркера. Сетевой адаптер станции с кадрами, у которых приоритет ниже, чем приоритет маркера, не может захватить маркер, но может поместить наибольший приоритет своих ожидающих передачи кадров в резервные биты маркера, но только в том случае, если записанный в резервных битах приоритет ниже его собственного. В результате в резервных битах приоритета устанавливается наивысший приоритет станции, которая пытается получить доступ к кольцу, но не может этого сделать из-за высокого приоритета маркера.

Станция, сумевшая захватить маркер, передает свои кадры с приоритетом маркера, а затем передает маркер следующему соседу. При этом она переписывает значение резервного приоритета в поле приоритета маркера, а резервный приоритет обнуляется. Поэтому при следующем проходе маркера по кольцу его захватит станция, имеющая наивысший приоритет.

При инициализации кольца основной и резервный приоритет маркера устанавливаются в 0.

193

Хотя механизм приоритетов в технологии Token Ring имеется, но он начинает работать только в том случае, когда приложение или прикладной протокол решают его использовать. Иначе все станции будут иметь равные права доступа к кольцу, что в основном и происходит на практике, так как большая часть приложений этим механизмом не пользуется. Это связано с тем, что приоритеты кадров поддерживаются не во всех технологиях, например в сетях Ethernet они отсутствуют, поэтому приложение будет вести себя по-разному, в зависимости от технологии нижнего уровня, что нежелательно. В современных сетях приоритетность обработки кадров обычно обеспечивается коммутаторами или маршрутизаторами, которые поддерживают их независимо от используемых протоколов канального уровня.

Физический уровень технологии Token Ring

Стандарт Token Ring фирмы IBM изначально предусматривал построение связей в сети с помощью концентраторов, называемых MAU (Multistation Access Unit) или MSAU (Multi-Station

Access Unit), то есть устройствами многостанционного доступа (рис. 4.2.2). Сеть Token Ring может включать до 260 узлов.

Концентратор Token Ring может быть активным или пассивным. Пассивный концентратор просто соединяет порты внутренними связями так, чтобы станции, подключаемые к этим портам, образовали кольцо. Ни усиление сигналов, ни их ресинхронизацию пассивный MSAU не выполняет. Такое устройство можно считать простым кроссовым блоком за одним исключением - MSAU обеспечивает обход какого-либо порта, когда присоединенный к этому порту компьютер выключают. Такая функция необходима для обеспечения связности кольца вне зависимости от состояния подключенных компьютеров. Обычно обход порта выполняется за счет релейных схем, которые питаются постоянным током от сетевого адаптера, а при выключении сетевого адаптера нормально замкнутые контакты реле соединяют вход порта с его выходом.

Рисунок 4.2.2. Физическая конфигурация сети Token Ring

Активный концентратор выполняет функции регенерации сигналов и поэтому иногда называется повторителем, как в стандарте Ethernet.

Возникает вопрос - если концентратор является пассивным устройством, то каким образом обеспечивается качественная передача сигналов на большие расстояния, которые возникают при включении в сеть нескольких сот компьютеров? Ответ состоит в том, что роль усилителя сигналов в этом случае берет на себя каждый сетевой адаптер, а роль ресинхронизирующего блока выполняет сетевой адаптер активного монитора кольца. Каждый сетевой адаптер Token Ring имеет блок повторения, который умеет регенерировать и ресинхронизировать сигналы, однако последнюю функцию выполняет в кольце только блок повторения активного монитора.

194

Блок ресинхронизации состоит из 30-битного буфера, который принимает манчестерские сигналы с несколько искаженными за время оборота по кольцу интервалами следования. При максимальном количестве станций в кольце (260) вариация задержки циркуляции бита по кольцу может достигать 3-битовых интервалов. Активный монитор "вставляет" свой буфер в кольцо и синхронизирует битовые сигналы, выдавая их на выход с требуемой частотой.

В общем случае сеть Token Ring имеет комбинированную звездно-кольцевую конфигурацию. Конечные узлы подключаются к MSAU по топологии звезды, а сами MSAU объединяются через специальные порты Ring In (RI) и Ring Out (RO) для образования магистрального физического кольца.

Все станции в кольце должны работать на одной скорости - либо 4 Мбит/с, либо 16 Мбит/с. Кабели, соединяющие станцию с концентратором, называются ответвительными (lobe cable), а кабели, соединяющие концентраторы, - магистральными (trunk cable).

Технология Token Ring позволяет использовать для соединения конечных станций и концентраторов различные типы кабеля: STP Туре 1, UTP Туре 3, UTP Туре 6, а также волоконнооптический кабель.

При использовании экранированной витой пары STP Type 1 из номенклатуры кабельной системы IBM в кольцо допускается объединять до 260 станций при длине ответвительных кабелей до 100 метров, а при использовании неэкранированной витой пары максимальное количество станций сокращается до 72 при длине ответвительных кабелей до 45 метров.

Расстояние между пассивными MSAU может достигать 100 м при использовании кабеля STP Type 1 и 45 м при использовании кабеля UTP Type 3. Между активными MSAU максимальное расстояние увеличивается соответственно до 730 м или 365 м в зависимости от типа кабеля.

Максимальная длина кольца Token Ring составляет 4000 м. Ограничения на максимальную длину кольца и количество станций в кольце в технологии Token Ring не являются такими жесткими, как в технологии Ethernet. Здесь эти ограничения во многом связаны со временем оборота маркера по кольцу (но не только - есть и другие соображения, диктующие выбор ограничений). Так, если кольцо состоит из 260 станций, то при времени удержания маркера в 10 мс маркер вернется в активный монитор в худшем случае через 2,6 с, а это время как раз составляет тайм-аут контроля оборота маркера. В принципе, все значения тайм-аутов в сетевых адаптерах узлов сети Token Ring можно настраивать, поэтому можно построить сеть Token Ring с большим количеством станций и с большей длиной кольца.

Существует большое количество аппаратуры для сетей Token Ring, которая улучшает некоторые стандартные характеристики этих сетей: максимальную длину сети, расстояние между концентраторами, надежность (путем использования двойных колец).

Недавно компания IBM предложила новый вариант технологии Token Ring, названный High-Speed Token Ring, HSTR. Эта технология поддерживает битовые скорости в 100 и 155 Мбит/с, сохраняя основные особенности технологии Token Ring 16 Мбит/с.

Выводы по теме

1.Технология Token Ring развивается в основном компанией IBM и имеет также статус стандарта IEEE 802.5, который отражает наиболее важные усовершенствования, вносимые в технологию IBM.

2.В сетях Token Ring используется маркерный метод доступа, который гарантирует каждой станции получение доступа к разделяемому кольцу в течение времени оборота маркера. Из-за этого свойства этот метод иногда называют детерминированным.

3.Метод доступа основан на приоритетах: от 0 (низший) до 7 (высший). Станция сама определяет приоритет текущего кадра и может захватить кольцо только в том случае, когда в кольце нет более приоритетных кадров.

4.Сети Token Ring работают на двух скоростях: 4 и 16 Мбит/с и могут использовать в качестве физической среды экранированную витую пару, неэкранированную витую пару, а

195

также волоконно-оптический кабель. Максимальное количество станций в кольце - 260, а максимальная длина кольца - 4 км.

5.Технология Token Ring обладает элементами отказоустойчивости. За счет обратной связи кольца одна из станций - активный монитор - непрерывно контролирует наличие маркера, а также время оборота маркера и кадров данных. При некорректной работе кольца запускается процедура его повторной инициализации, а если она не помогает, то для локализации неисправного участка кабеля или неисправной станции используется процедура beaconing.

6.Максимальный размер поля данных кадра Token Ring зависит от скорости работы кольца. Для скорости 4 Мбит/с он равен около 5000 байт, а при скорости 16 Мбит/с - около 16 Кбайт. Минимальный размер поля данных кадра не определен, то есть может быть равен

0.

7.В сети Token Ring станции в кольцо объединяют с помощью концентраторов, называемых MSAU. Пассивный концентратор MSAU выполняет роль кроссовой панели, которая соединяет выход предыдущей станции в кольце со входом последующей. Максимальное расстояние от станции до MSAU - 100 м для STP и 45 м для UТР.

8.Активный монитор выполняет в кольце также роль повторителя - он ресинхронизирует сигналы, проходящие по кольцу.

9.Кольцо может быть построено на основе активного концентратора MSAU, который в этом случае называют повторителем.

10.Сеть Token Ring может строиться на основе нескольких колец, разделенных мостами, маршрутизирующими кадры по принципу "от источника", для чего в кадр Token Ring добавляется специальное поле с маршрутом прохождения колец.

Вопросы для самоконтроля

1.Какая топология характерна для сетей Token Ring?

2.Что такое маркер?

3.С какими битовыми скоростями работают сети Token Ring?

4.С какими битовыми скоростями могут работать рабочие станции в оддном кольце сети

Token Ring?

5.Какие процедуры контроля работы сети определены в сетях Token Ring?

6.Как обнаружить отказ активного монитора?

7.Какова процедура контроля за наличием маркера в сети?

8.Какие форматы кадров существуют в сети Token Ring?

9.Какие типы управляющих кадров МАС-уровня определяет стандарт Token Ring?

10.Для чего служит прерывающая последовательность?

11.В чем суть приоритетного доступа к кольцу?

12.Как происходит регенерация и ресинхронизация сигналов в сети Token Ring?

13.Поясните суть комбинированной звездно-кольцевой конфигурации сети Token Ring?

Ссылки на дополнительные материалы (печатные и электронные ресурсы)

Основные:

1.Новиков Ю.В., Кондратенко С.В. - Локальные сети: архитектура, алгоритмы, проектирование. М.: Издательство ЭКОМ, 2001.

2.Спортак Марк, Паппас Френк и др. - Компьютерные сети и сетевые технологии. К.: ООО

"ТИД "ДС", 2002.

3.В.Г.Олифер, Н.А. Олифер - Компьютерные сети. Принципы, технологии, протоколы. СПБ: Издательство "Питер", 2000. - 672 с.:ил.

Дополнительные:

1.Крук Б.И., Попантонопуло В.Н., Шувалов В.П. Телекоммуникационные системы и сети. Т1:учеб.пособие/изд.2-е, испр. и доп. -Новосибирск: Сиб.предприятие "Наука" РАН, 1998.

196

2.Компьютерные системы и сети: Учеб.пособие/ В.П.Косарев и др./Под ред. В.П.Косарева и Л.В.Еремина-М.:Финансы и статистика,1999.

3.Словарь сетевых терминов http://ivb.unact.ru/

Тема 4.3. Apple Talk и Arknet

Цели изучения темы

Образовательная - изучить основные характеристики и принцип функционирования сетей Apple Talk, знать архитектуру и форматы кадров AppleTalk, аппаратные компоненты и кабельную систему сетей AppleTalk.

Развивающая - развитие мышления, памяти, самостоятельности студентов посредством умственных, исследовательских способов познавательной деятельности.

Воспитательная - формирование научного мировоззрения, навыков индивидуальной самостоятельной работы с учебным материалом.

Требования к знаниям и умениям

Студент должен знать:

характеристики, компоненты и принцип работы Apple Talk

аппаратные компоненты сети Apple Talk

Студент должен уметь:

идентифицировать основные компоненты сети Apple Talk

определять компоненты, необходимые для реализации сети Apple Talk на конкретном рабочем месте

Ключевой термин

Ключевой термин: технология AppleTalk.

AppleTalk - разработанный корпорацией Apple Computers протокол, позволяющий совместно использовать файлы и принтеры и перенаправляющий поток информации между компьютерами.

Второстепенные термины

Arknet (Attached Resource Computer NETWork ) - архитектура локальной сети,

разработанная корпорацией Datapoint. В качестве передающей среды используются витая пара, коаксиальный кабель и оптоволоконный кабель. Скорость передачи данных - 2, 5 Мбит/с. При подключении устройств в Аrcnet применяют топологии шина и звезда;

Apple Talk идентифицирует несколько сетевых объектов. Самым простым является узел (node), который является просто любым устройством, соединенным с сетью Apple Talk. Наиболее распространенными узлами являются компьютеры Macintosh и лазерные принтеры. Следующим объектом, определяемым Apple Talk, является сеть;

Зона (zone) Аpple Talk является логической группой из нескольких сетей (возможно находящихся далеко друг от друга);

Сетевой протокол - набор правил обмена информацией между абонентами сети.

Структурная схема терминов

Технология AppleTalk

197

Основные характеристики технологии

В начале 1980 гг. компания Apple Computer готовилась к выпуску компьютера Macintosh. Инженеры компании знали, что в скором времени сети станут насущной необходимостью, а не просто интересной новинкой. Они хотели также добиться того, чтобы базирующаяся на компьютерах Macintosh сеть была расширением интерфейса пользователя Macintosh. Имея в виду эти два фактора, Apple решила встроить сетевой интерфейс в каждый Macintosh и интегрировать этот интерфейс в окружение настольной вычислительной машины. Новая сетевая архитектура Apple получила название Apple Talk.

Хотя Apple Talk является патентованной сетью, Apple опубликовала характеристики Apple Talk, пытаясь поощрить разработку при участии третьей стороны. В настоящее время большое число компаний успешно сбывают на рынке базирующиеся на Apple Talk изделия; в их числе Novell Inc. и

Мicrosoft Corparation.

Оригинальную реализацию Apple Talk, разработанную для локальных рабочих групп, в настоящее время обычно называют Apple Talk Phase I. Однако после установки свыше 1.5 мил. компьютеров Macintosh в течение первых пяти лет существования этого изделия, Apple обнаружила, что некоторые крупные корпорации превышают встроенные возможности Apple Talk Phase I, поэтому протокол был модернизирован. Расширенные протоколы стали известны под названием Apple Talk Phase II. Oни расширили возможности маршрутизации Apple Talk, обеспечив их успешное применение в более крупных сетях.

Основы технологии

Apple Talk была разработана как система распределенной сети клиентсервер. Другими словами, пользователи совместно пользуются сетевыми ресурсами (такими, как файлы и принтеры). Компьютеры, обеспечивающие эти ресурсы, называются служебными устройствами (servers); компьютеры, использующие сетевые ресурсы служебных устройств, называются клиентами (clients). Взаимодействие со служебными устройствами в значительной степени является прозрачным для пользователя, т.к. сам компьютер определяет местоположение запрашиваемого сетевого ресурса и обращается к нему без получения дальнейшей информации от пользователя. В дополнение к простоте использования, распределенные системы также имеют экономические преимущества по сравнению с системами, где все равны, т.к. важные материалы могут быть помещены в нескольких, а не во многих компьютерах.

Apple Talk относительно хорошо согласуется с эталонной моделью OSI. На рис. 4.3.1 представлены протоколы Apple Talk, смежные с теми уровнями OSI, с которыми у них установлено соответствие. Этот рисунок отличается от других изображений связи пакета протоколов Apple Talk с моделью OSI тем, что на нем NBP, ZIP и RTMP размещены на Уровне 3, а АЕР - на Уровне 7. По мнению Cisco, NBP, ZIP и RТМP по своим функциональным возможностям стоят в ряду ближе к Уровню 3 модели OSI, хотя они и пользуются услугами DDP, другого протокола Уровня 3. Аналогично, Cisco полагает, что АРЕ следует включить в перечень протоколов прикладного уровня, т.к. он обычно используется для обеспечения функциональных возможностей прикладного уровня. В частности, АЕР помогает определить возможность отдаленных узлов принимать следующие соединения.

Рисунок 4.3.1. Apple Talk и эталонная модель OSI

198

Краткое описание протоколов Apple Talk приведено в таб. 4.3.1

Таблица 4.3.1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Обозначение

 

Название протокола (анг.)

 

 

Назначение протокола

 

 

п/п

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

AURP

 

Apple Talk Update-based

 

 

Протокол маршрутизации

 

 

 

 

 

 

 

 

 

 

 

Routing Protocol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

RTMP

 

Routing Table Maintenance

 

 

Протокол обмена маршрутной Информацией

 

 

 

 

 

 

 

 

 

 

 

Protocol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

AEP

 

Apple Talk Echo Protocol

 

 

Протокол проверки доступности объектов

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

ATP

 

Apple Talk Transaction Protocol

 

 

Транспортный протокол, ориентированный

 

 

 

 

 

 

 

 

 

 

 

 

 

на соединение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

NBR

 

Name Binding Protocol

 

 

Протокол привязки имен к сетевым адресам

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

DDP

 

Datagram Delivery Protocol

 

 

Протокол сетевого уровня

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

Apple LAP

 

Link Access Protocol

 

 

Протокол доступа связи

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

AARP

 

Apple Talk Adress Resolution

 

 

Протокол привязки адреса сетевой карты к

 

 

 

 

 

 

 

 

 

 

Protocol

 

 

сетевому адресу

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

AFP

 

Apple Talk Filing Protocol

 

 

Протокол ведения картотеки

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

ASP

 

Apple Talk Sessin Protocol

 

 

Протокол сеансового уровня

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

 

 

Postscript

 

 

Протокол доступа к принтерам

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

PAP

 

Printer Access Protocol

 

 

Протокол доступа к принтерам

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

 

 

ADSP

 

Apple Talk Data Stream

 

 

Протокол потока данных

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protocol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Доступ к среде

 

 

 

 

 

Apple разработала Apple Talk таким образом, чтобы он был независимым от канального уровня. Другими словами, теоретически он может работать в дополнение к любой реализации канального уровня. Apple обеспечивает различные реализации канального уровня, включая Ethernet, Token Ring, FDDI и Local Talk. Apple ссылается на AppleTalk, работающий в Ethernet, как нa EtherTalk, в Тоkеn Ring - кaк на Token Talk и в FDDI - как на FDDI Talk.

Сетевой уровень

В данной подтеме описываются концепции, принятые для сетевого уровня AppleTalk, и протоколы для этого уровня. В нем рассматриваются назначение адреса протокола, сетевые объекты и протоколы Apple Talk, которые обеспечивают функциональные возможности Уровня 3 эталонной модели OSI.

Назначения адреса протокола

Для обеспечения минимальных затрат, связанных с работой администратора сети, aдреса узлов Apple Talk назначаются динамично. Когда Macintosh, использующий Apple Talk, начинает работать, он выбирает какой-нибудь адрес протокола (сетевого уровня) и проверяет его, чтобы убедиться, что этот адрес используется в данный момент. Если это не так, то этот новый узел успешно присваивает себе какой-нибудь адрес. Если этот адрес используется в данный момент, то узел с конфликтным адресом отправляет сообщение, указывающее на наличие проблемы, а новый узел выбирает другой адрес и повторяет этот процесс. На рис. 4.3.2 представлен процесс выбора адреса Apple Talk.

199

Фактические механизмы выбора адреса Apple Talk зависят от носителя. Для установления связи адресов Apple Talk с конкретными адресами носителя используется протокoл разрешения адреса Apple Talk (AARP). AARP также устанавливает связи между адресами других протоколов и аппаратными адресами. Если пакет протоколов Apple Talk или любой другой пакет протоколов должен отправить пакет данных в другой сетевой узел, то адрес протокола передается в AARP. AARP сначала проверяет адресный кэш, чтобы определить, является ли уже установленной связь между адресом этого протокола и аппаратным адресом.

Если это так, то эта связь передается в запрашивающий пакет протоколов. Если это не так, то AARP инициирует широковещательное или многопунктовое сообщение, запрашивающее об аппаратном адресе данного протокольного адреса. Если широковещательное сообщение доходит до узла с этим протокольным адресом, то этот узел в ответном сообщении указывает свой аппаратный адрес. Эта информация передается в запрашивающий пакет протоколов, который использует этот аппаратный адрес для связи с этим узлом.

Рисунок 4.3.2. Схема процесса выбора адреса Apple Talk.

Сетевые объекты

Apple Talk идентифицирует несколько сетевых объектов. Самым простым является узел (node), который является просто любым устройством, соединенным с сетью Apple Talk. Наиболее распространенными узлами являются компьютеры Macintosh и лазерные принтеры, однако многие другие компьютеры также способны осуществлять связь с Apple Talk, в том числе компьютеры IBM PC, Digital Equipment Corparation VAX и различные АРМ. Следующим объектом, определяемым Apple Talk, является сеть. Сеть Apple Talk представляет собой просто отдельный логический кабель. Хотя этот логический кабель часто является отдельным физическим кабелем, некоторые

200

вычислительные центры используют мосты для объединения нескольких физических кабелей. И наконец, зона (zone) Аpple Talk является логической группой из нескольких сетей (возможно находящихся далеко друг от друга). Объекты Apple Talk изображены на рис. 4.3.3.

Рисунок 4.3.3. Процесс выбора адреса Apple Talk

Протокол доставки дейтаграмм (DDP)

Основным протоколом сетевого уровня AppleTalk является протокол DDP. DDP обеспечивает обслуживание без установления соединения между сетевыми гнездами. Гнезда могут назначаться либо статистически, либо динамически. Адреса Apple Talk, назначаемые DDP, состоят из 2 компонентов: 16-битового номера сети (network number) и 8-битового номера узла (node number). Эти два компонента обычно записываются в виде десятичных номеров, разделенных точкой (например, 10.1 означает сеть 10, узел 1). Если номер сети и номер узла дополнены 8-битовым гнездом (socket), обозначающим какой-нибудь особый процесс, то это означает, что в сети задан какой-нибудь уникальный процесс.

Apple Talk Phase II делает различие между нерасширенными (nоnextended) и расширенными (extended) сетями. В нерасширенных сетях, таких как Local Talk, номер каждого узла Apple Talk уникален. Нерасширенные сети были единственным типом сети, определенным в Apple Talk Phase I. В расширенных сетях, таких как Ether Talk и Token Talk, уникальной является комбинация номер каждой сети/номер узла.

Зоны определяются управляющим сети Apple Talk в процессе конфигурации роутера (маршрутизатора). Каждый узел AppleTalk принадлежит к отдельной конкретной зоне. Расширенные сети могут иметь несколько зон, которые ассоциируются с ними. Узлы в расширенных сетях могут принадлежать к любой отдельной зоне, которая ассоциируется с этой расширенной сетью.

Протокол поддержки маршрутной таблицы (RTMP)