Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Белоногов. Задачник по теории групп

.pdf
Скачиваний:
49
Добавлен:
25.03.2015
Размер:
1.35 Mб
Скачать

$# I # p# G p

! G

$ $ G π 4

π# > G

$ I G π 4 π

H # #

M G! G π ! M = H

×

Oπ (G)

|G : M|

 

 

 

 

 

$ 3 "

# G H

(

G

Oπ(G) Oπ (G)D

 

 

 

. G = Oπ(G) × Oπ (G)

$ G = P H! P Syl(G) >

( Φ(G) = Φ(P ) × (Φ(H) ∩ HG) A ! Φ(P ) = Φ(G) ∩ P

. I H ≤ M G! H M G NG(H) M

0 M {M | H ≤ M G, M G} = Φ(P )NG(H)

$ G A B ! G = ABA!

p π(A) \ π(B) I G p! Sylp (A) Sylp (G)

$ H E T I # G! N G! (|H|, |N |) = 1 H N > HN/N E T I G/N

$ G = AB! A ≤ G B G > " a A

! (o(a), |B|) = 1! CG(a) = CA(a)CB(a)

$! G E π π

H E 4 π T I > G

$ ! " # 9 !

, H

# p7 %

% p73

; G H

nH

.

. .

 

G = Hy1

Hy2

. . . Hyn

(1)

# : x G x = hyi!

h H! : h yi " : x

h CH : xC η(x) K E

H! H ) G

G/K! , #

n

g → K η(xig) (g G),

i=1

G H/K VG→H/K !

K = H E VG→H

) VX→Y /Z ! X E ! Y E 4 Y ≤ Z ≤ Y

A P ≤ G 7 !

A P G! " g G

Ag P ! Ag = AD

A P G! AG ∩ P A

" ! ! P E

# G

I x P Sylp(G)! G E ! : x

P G! |CP (x)| = |CG(x)|p

CP (x) Sylp(CG(x))

p ! p p

D

p ! $ " # 4 # p

$ " # # # p! #D

! ! 4

A " : ,

p E !

Cl(X) E 4 : X!

G E !

CSylp(G)C

> H E G H ≤

K ≤ H

( ) VG→H/K ! 4 !

# yi (

. VG→H/K , G H/K

N H E G g G ( 3 " : x1, . . . , xt G !

G = i=1 (Hxi Hxig . . . . . Hxigni1)D

ni = o (xigxi 1; H) xigni xi 1 E

: xigxi 1! HD

n1 + . . . + nt = |G : H|. t .

A ! " i {Hxi, Hxig, . . . , Hxigni1}

: g #

G : H H 2 4 g G : H

t E g

. I x1, . . . , xt E : # ( H ≤ K ≤ H!

 

t

 

V

i

(g) = K xigni x1.

G→H/K

i

 

=1

H E # G Z FG(H)

! 4 " [h, g]!

h H g G! H

( I V = VG→H/K (H) (H ≤ K ≤ H)!

G = Ker(V )H V (G) = V (H).

. Ker(VG→H ) ∩ H = G ∩ H = FG(H)

0 Ker(VG→H ) = ∩{ K G | G/K E π(H) }

G E

! P Syl2(G) M P >

"$

P # "$#

M!

G " .

P Sylp(G)! P = B a (B ≤ G, a G) aG ∩ P Ba

> G N a H G = N a

VG→H/K H !

K

! P Sylp(G) A, B E P !

4 G > A B NG(P )

" > F # p I

P # G $ NG(P )! G

" N "! G = N H

# 7 23 ·p2 " p > 3

" "

$ < " F # H I

H # G $ NG(H)! G

" N "! G = N H

P Syl2(G) > G .

" H

( P E $ !

. P Z2m × Z2! m > 1

I P = a Sylp(G) (a P ) (p − 1, |NG(P )|) = 1! G

p

I # G $

! G ! 4 F (G) G/F (G) $!

P Sylp(G)! P P ∩Z(NG(P )) = 1! G

" p

I G " p

(n1, n2, . . . , nk)! n1 > n2 ≥ . . . ≥ nk (k ≥ 2), (p −

1, |NG(P )|) = 1! G " p

P Sylp(G)! P E a E

P ! a 4 G #

# "! # a > G

p I : P $ ! G

p

! H E # G ! H∩Hg = 1

g G \ H V := VG→H ( H E G

. V (h) = H h h H ! ! G = Ker(V )H Ker(V ) ∩ H = H

0 I H ! G " N "!

G = N H Z # # 9 '..

" H E #

G I H 4 ! 4!

4 ! G

" N "! G = N H

# G E ! " "

A

( A G N !

G = AN A ∩ N = AG.

. G

$ G E # # p#

P ! p > 2! K G I Ω1(P ) ≤ P ∩ K ≤ Φ(P )! G p

G E $# # p#

> G " K "! p |K| |G/K|! G p

> P Sylp(G) ( ( 7 "

P ∩ Ker(VG→P ) = P ∩ G = P ∩ NG(P ) , P ∩ (P g) | g G .

. . 7 " I G p!

p, G NG(Z(P )) ,

P Syl2(G) P M2m ! m ≥ 4 P = a 2m−1 b 2!

b1ab = a1+2m−2 > G .

P Sylp(G)! P N := NG(P )

( P ∩ G = P ∩ N P = (P ∩ N ) × (P ∩ Z(N ))

. 2 p, G , P ∩ Z(N )

P E p # G I

PSylp(G)! H ( NG(P )/CG(P ) E p!

. NG(P ) p

3 : #! P

# #O

> 9 p P Sylp(G) ; H

( " # A P NG(A)/CG(A) p!

. " # # A P NG(A) p!

0 G p

! G E

( G p p π(G)

. G p ! ! G = P Q! |P | = pα, |Q| = qβ , p, q E ! α, β N

0 P = a E $

" ! p

! p! #

# ! p

! p! #

$ G E ! " " π

H > π G

# ! 4 # H e td*uQh`g

I p # G

# N G #!

G! N ! p!

G/Op(G) p

> > p P Sylp(G)! p > 2 ; H

( " # # A P NG(A)/CG(A)

p!

." # # # A P

NG(A) p!

0 G p

p E 4 G E IG " p G!G E p p .

I G " " N "!

N Φ(G) G! N ! p ! p > 2! p = 2 .

N > N G p

p ≤ 2

K H ≤ G V E G H/K g G

k.

G = HyiCG(g)

i=1

(yi G, k N >

k

V (g) = K yigmi yi1, mi = |CG(g) : CG(g) ∩ Hyi |.

i=1

H ≤ K ≤ H ≤ G g G X

: xi

 

G # (

 

 

nx = o (xgx1; H)!

x[g] := xgnx x1!

 

XC := {x X | x[g] C},

x

C

x[g] (con (C) = K XC

con (C) := K

 

 

X

= {x1, . . . , xt} E

.( . < x X

CCl (H)

=).

> . .( .

 

VG→H/K (g) = K

 

 

 

x[g] =

con (C).

 

 

 

 

 

 

x X

C Cl (H)

C = aH Cl (H) (a H)

 

( con (C) = Ka|XC |

 

 

. I o(g) !

" x XC H

 

 

o(g)

 

 

nx = q :=

 

 

D

 

 

o(a)

 

 

XC = X ∩ HxCG(gq )D

 

 

HxCG(gq) B r g G : H!

qD

 

X

= r =

|CG(a)|

 

 

 

| C |

 

 

|CH (a)|q

 

 

}Mld*~*u•mbMl! (8-&

! I P Sylp(G)! # : P 4 G

: : P : b !

CP (b) Sylp(CG(b))

 

" P

 

Syl

(G)! P

K

P V E G P/K

a , . . . , a

 

 

p

 

 

G

 

 

P .

 

.

P

 

 

 

 

 

 

 

 

 

a , . . . , a

 

 

ak

a E : p P \ K a

∩ P = a1 . . .

 

1

 

r

E : :

1

k

>

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

V (a) = Q am, m = CG(a) p .

 

 

 

 

 

 

 

 

 

 

i

 

 

|

 

|

 

 

 

 

 

 

 

 

 

 

=1

 

 

 

 

 

 

 

 

 

€ ]Wu`bMl•d`g

# P Sylp(G)! P ≤ K ≤ P a E : p P \ K ! aG K : b p

P ! CP (b) CP (a) > G "

p

$ I A B ≤ G! AG ∩ B B

G

A B ≤ G H ≤ G

( I A B G! A ∩ H

B ∩ H H

. ! A B

G A ∩ H B ∩ H H

A B ≤ G

( I A B G! A

B G

. ! A B

G! A # B G

G E ! P1 ≤ P Sylp(G) A E

P1 I " : P

: NG(P1) : ! NG(P1)

P ! A P G

P Sylp(G) A E P

G

( A " # # p G! #

. =" A P NG(A) 0 I A Z(P )! A P G

G E ! x P Sylp(G)! x

$ " # # p G! #

> xG ∩ P P G

% : , :

A " : , G E ! F E p E

G F ,

: # GLn(F ) GL(V )! V E

n F ! n ≥ 1 Z n

: deg(A)

GLn(F ) " ! GL(V ) E

"

, A

! Ker(A) E

V V (n, F ) iB E # , GL(V ) GLn(F )!

4 # '5 B E V iB : a → aB ! aB E $ a B I A E

GGL(V )! $ M = AiB

G→ GLn(F ) (M(g) = A(g)B g G) )

A! A (= MiB1) E

M C C

C C

A B G F "

H A ≈ B! A $

B! A B E $

A G F "

" & ..0

! E !

! ! $ E

"

#D ! $

A : G → GL(V ) ! V

{0} V A(G)

! ! V = V1 V2! V1 V2 E

A(G) V I U V E A(G) V U W !