Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Обмен энергоносителей.doc
Скачиваний:
201
Добавлен:
19.03.2015
Размер:
1.86 Mб
Скачать

545 :: 546 :: 547 :: 548 :: 549 :: Содержание

ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ ОБМЕНА ВЕЩЕСТВ И ФУНКЦИЙ ОРГАНИЗМА

I. Основные системы регуляции метаболизма и межклеточной коммуникации

Для нормального функционирования многоклеточного организма необходима взаимосвязь между отдельными клетками, тканями и органами. Эту взаимосвязь осуществляют 4 основные системы регуляции (рис. 11-1).

  • Центральная и периферическая нервные системы через нервные импульсы и нейромедиаторы;

  • Эндокринная система через эндокринные железы и гормоны, которые секретируются в кровь и влияют на метаболизм различных клеток-мишеней;

  • Паракринная и аутокринная системы посредством различных соединений, которые секретируются в межклеточное пространство и взаимодействуют с рецепторами либо близлежащих клеток, либо той же клетки (простагландины, гормоны ЖКТ, гистамин и др.);

  • Иммунная система через специфические белки (цитокины, антитела).

А. Иерархия регуляторных систем

Системы регуляции обмена веществ и функций организма образуют 3 иерархических уровня.

Первый уровень -ЦНС. Нервные клетки получают сигналы, поступающие из внешней и внутренней среды, преобразуют их в форму нервного импульса и передают через синапсы, используя химические сигналы - медиаторы. Медиаторы вызывают изменения метаболизма в эффекторных клетках.

Второй уровень - эндокринная система. Включает гипоталамус, гипофиз, периферические эндокринные железы (а также отдельные клетки), синтезирующие гормоны и высвобождающие их в кровь при действии соответствующего стимула.

Третий уровень - внутриклеточный. Его составляют изменения метаболизма в пределах клетки или отдельного метаболического пути, происходящие в результате:

545

Рис. 11-1. Системы регуляции метаболизма.А - эндокринная - гормоны секретируются железами в кровь, транспортируются по кровеносному руслу и связываются с рецепторами клеток-мишеней; Б - паракринная - гормоны секретируются во внеклеточное пространство и связываются с мембранными рецепторами соседних клеток; В - аутокринная - гормоны секретируются во внеклеточное пространство и связываются с мембранными рецепторами клетки, секретирующей гормон.

  • изменения активности ферментов путём активации или ингибирования;

  • изменения количества ферментов по механизму индукции или репрессии синтеза белков или изменения скорости их разрушения;

  • изменения скорости транспорта веществ через мембраны клеток.

Б. Роль гормонов в регуляции обмена веществ и функций

Интегрирующими регуляторами, связывающими различные регуляторные механизмы и метаболизм в разных органах, являются гормоны. Они функционируют как химические посредники, переносящие сигналы, возникающие в различных органах и ЦНС. Ответная реакция клетки на действие гормона очень разнообразна и определяется как химическим строением гормона, так и типом клетки, на которую направлено действие гормона.

В крови гормоны присутствуют в очень низкой концентрации. Для того чтобы передавать сигналы в клетки, гормоны должны распознаваться и связываться особыми белками клетки - рецепторами, обладающими высокой специфичностью.

Физиологический эффект гормона определяется разными факторами, например концентрацией гормона (которая определяется скоростью инактивации в результате распада гормонов, протекающего в основном в печени, и скоростью выведения гормонов и его метаболитов из организма), его сродством к белкам-переносчикам (стероидные и тиреоидные гормоны транспортируются по кровеносному руслу В комплексе с белками), количеством и типом рецепторов на поверхности клеток-мишеней.

Синтез и секреция гормонов стимулируются внешними и внутренними сигналами, поступающими в ЦНС (рис. 11-2).

Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных рилизинг-гормонов (от англ, release - освобождать) - либеринов и статинов, которые, соответственно, стимулируют или ингибируют синтез и секрецию гормонов передней доли гипофиза. Гормоны передней доли гипофиза, называемые тройными гормонами, стимулируют образование и секрецию гормонов периферических эндокринных желёз, которые поступают

546

Рис. 11-2. Схема взаимосвязи регуляторных систем организма.1 - синтез и секреция гормонов стимулируется внешними и внутренними сигналами; 2 - сигналы по нейронам поступают в гипоталамус, где стимулируют синтез и секрецию рилизинг-гормо-нов; 3 - рилизинг-гормоны стимулируют (либерины) или ингибируют (статины) синтез и секрецию тройных гормонов.гипофиза; 4 - тройные гормоны стимулируют синтез и секрецию гормонов периферических эндокринных желез; 5 - гормоны эндокринных желез поступают в кровоток и взаимодействуют с клетками-мишенями; 6 - изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов эндокринных желез и гипоталамуса; 7 - синтез и секреция тройных гормонов подавляется гормонами эндокринных желез;⊕- стимуляция синтеза и секреции гормонов;⊝- подавление синтеза и секреции гормонов (отрицательная обратная связь).

в общий кровоток и взаимодействуют с клетками-мишенями.

Поддержание уровня гормонов в организме обеспечивает механизм отрицательной обратной связи. Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус. Синтез и секреция тропных гормонов подавляется гормонами эндокринных периферических желёз. Такие петли обратной связи действуют в системах регуляции гормонов надпочечников, щитовидной железы, половых желёз.

Не все эндокринные железы регулируются подобным образом. Гормоны задней доли гипофиза (вазопрессин и окситоцин) синтезируются в гипоталамусе в виде предшественников и хранятся в гранулах терминальных аксонов нейрогипофиза. Секреция гормонов поджелудочной железы (инсулина и глюкагона) напрямую зависит от концентрации глюкозы в крови.

547

В регуляции межклеточных взаимодействий участвуют также низкомолекулярные белковые соединения - цитокины. Влияние цитокинов на различные функции клеток обусловлено их взаимодействием с мембранными рецепторами. Через образование внутриклеточных посредников сигналы передаются в ядро, где происходят активация определённых генов и индукция синтеза белков. Все цитокины объединяются следующими общими свойствами:

  • синтезируются в процессе иммунного ответа организма, служат медиаторами иммунной и воспалительной реакций и обладают в основном аутокринной, в некоторых случаях паракринной и эндокринной активностью;

  • действуют как факторы роста и факторы дифференцировки клеток (при этом вызывают преимущественно медленные клеточные реакции, требующие синтеза новых белков);

  • обладают плейотропной (полифункциональной) активностью.

В. Классификация и номенклатура гормонов

Все гормоны классифицируют по химическому строению, биологическим функциям и механизму действия.

1. Классификация гормонов по химическому строению

По химическому строению гормоны делят на 3 группы: пептидные (или белковые), стероидные и непептидные производные аминокислот (табл. 11-1).

2. Классификация гормонов по биологическим функциям

По биологическим функциям гормоны можно разделить на несколько групп (табл. 11-2). Эта классификация условна, поскольку одни и те же гормоны могут выполнять разные функции. Например, адреналин участвует в регуляции обме-

Таблица 11-1, Классификация гормонов по химическому строению

Пептидные гормоны

Стероиды

Производные аминокислот

Адренокортикотропный гормон (кортикотропин, АКТГ)

Альдостерон

Адреналин

Гормон роста (соматотропин, ГР, СТГ)

Кортизол

Норадреналин

Тиреотропный гормон (тиреотропин, ТТГ)

Кальцитриол

Трийодтиронин (Т3)

Лактогенный гормон (пролактин, ЛТГ)

Тестостерон

Тироксин (Т4)

Лютеинизирующий гормон (лютропин, ЛГ)

Эстрадиол

 

Фолликулостимулирующий гормон (ФСГ)

Прогестерон

 

Меланоцитстимулирующий гормон (МСГ)

 

 

Хорионический гонадотропин (ХГ)

 

 

Антидиуретический гормон (вазопрессин, АДГ)

 

 

Окситоцин

 

 

Паратиреоидный гормон (паратгормон, ПТГ)

 

 

Кальцитонин

 

 

Инсулин

 

 

Глюкагон

 

 

548

Таблица 11-2. Классификация гормонов по биологическим функциям

Регулируемые процессы

Гормоны

Обмен углеводов, липйдов, аминокислот

Инсулин, глюкагон, адреналин, кортизол, тироксин, соматотропин

Водно-солевой обмен

Альдостерон, антидиуретический гормон

Обмен кальция и фосфатов

Паратгормон, кальцитонин, кальцитриол

Репродуктивная функция

Эстрадиол, тестостерон, прогестерон, гонадотропные гормоны

Синтез и секреция гормонов эндокринных желёз

Тропные гормоны гипофиза, либерины и статины гипоталамуса

Изменение метаболизма в клетках, синтезирующих гормон

Эйкозаноиды, гистамин, секретин, гастрин, соматостатин, вазоактивный интестинальный пептид (ВИП), цитокины

на жиров и углеводов и, кроме этого, регулирует частоту сердечных сокращений, АД, сокращение гладких мышц. Кортизол не только стимулирует глюконеогенез, но и вызывает задержку NaCl.

549