Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
фффф.docx
Скачиваний:
69
Добавлен:
18.03.2015
Размер:
176.59 Кб
Скачать

5 Какое силовое поле называют потенциальным? Докажите, что однородное и центральное силовые поля являются потенциальными. Как определяется сила через потенциальную энергию?

Если работа сил поля, действующих на перемещающуюся в нём пробную частицу, не зависит от траектории частицы, и определяется только её начальным и конечным положениями, то такое поле называется потенциальным. Для него можно ввести понятие потенциальной энергии частицы — некоторой функции координат частиц такой, что разность её значений в точках 1 и 2 равна работе, совершаемой полем при перемещении частицы из точки 1 в точку 2.

Сила называется потенциальной, если существует скалярная функция, известная как потенциальная энергия и обозначаемая Ep, такая что

Если все силы, действующие на частицу консервативны, и Ep является полной потенциальной энергией, полученной суммированием потенциальных энергий соответствующих каждой силе, тогда: .

Этот результат известен как сохранение механической энергии и утверждает, что полная механическая энергия в замкнутой системе, в которой действуют консервативные силы

является постоянной относительно времени. Этот закон широко используется при решении задач классической механики.

\

11 Запишите преобразования Лоренца для координат и времени. Выведите из них закон сложения скоростей в релятивистской механике.

x= y=y’ z=z’ t=

Обратное преобразование Лоренца

x’= y’=y z’=z t’=

Пусть в системе отсчета K’ материальная точка движется вдоль оси х’ спостоянной скоростью  Система K’ движется относительно системы K в том же направлении со скоростью v , Определим, чему равна скорость материальной точки vo, относительно системы K, т.е. чему равно . Пусть при  м.т. находится в начале координат, причем . Для системы K:

Подставляя и t в формулу для vo

Делим числитель и знаменатель на t

Это равенство выражает собой релятивистский закон сложения скоростей. При малых значениях скоростей  и  имеем

т.е. релятивистский закон сложения скоростей переходит в классический.

18. Пружинный маятник. Выведите дифференциальное уравнение его свободных незатухающих колебаний и запишите его решение

Пружинный маятник — механическая система, состоящая из пружины с коэффициентом упругости (жёсткостью) k (закон Гука), один конец которой жёстко закреплён, а на втором находится груз массы m.

Тогда согласно второму закону Ньютона, учитывая знаки проекций, получим: . Но ,

 

тогда: .

 

Или  - ускорение тела, колеблющегося на пружине, не зависит от силы тяжести, действующей на это тело. Сила тяжести только приводит к изменению положения равновесия.

Выразим ускорение:.

 

 

Сравним полученное уравнение с уравнением колебательного движения .

 

Видно, что  или  - циклическая частота при колебаниях пружинного маятника.

 

Период колебаний  или  (формула Гюйгенса).

 

 

 

 

Аналогичные вычисления можно проделать с помощью закона сохранения энергии. Учтем, что потенциальная энергия упруго деформированного тела равна, а полная механическая энергия равна максимальной потенциальной или кинетической.

 

Запишем закон сохранения энергии и возьмем производную от левой и правой частей уравнения:.

 

Т.к. производная от постоянной величины равна нулю, то .

 

Производная суммы равна сумме производных: 

 

и .

 

Следовательно:,  а значит .

Свободные затухающие колебания пружинного маятника. Для пружинного маятника массой m, который совершает малые колебания под действием упругой силы F= -kx, сила трения прямо пропорциональна скорости, т. е.    где r — коэффициент сопротивления; знак минус говорит о том, что сила трения и скорость противоположно направлены.  При этих условиях закон движения маятника   (9)  Используя формулу  и считая, что коэффициент затухания равен   (10)  получим полностью идентичное уравнению (1) дифференциальное уравнение затухающих колебаний маятника:    Из выражений (1) и (5) следует, что колебания маятника удовлетворяют уравнению    где частота  (см. (4)).  Добротность пружинного маятника, используя (8) и (10),  .

23 Выведите уравнение колебательного движения, являющегося суперпозицией гармонических колебаний одного направления с близкими частотами. Изобразите результирующее колебание на графике. Как называется такой вид колебания?

Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты

воспользовавшись методом вращающегося вектора амплитуды. Построим векторные диаграммы этих колебаний (рис. 203). Tax как векторы A1 и А2 вращаются с одинаковой угловой скоростью 0, то разность фаз (21) между ними остается постоянной. Очевидно, что уравнение результирующего колебания будет

                                          (144.1)

В выражении (144.1) амплитуда А и начальная фаза  соответственно задаются соотношениями

                          (144.2)

Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направле­нии и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (21) складываемых колебаний.

Проанализируем выражение (144.2) в зависимости от разности фаз (21):

1) 21 = ±2m (т=0, 1, 2, ...), тогда A=A1+A2, т. е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;

2) 21 = ±(2m+1) (т=0, 1, 2, ...), тогда A=|A1A2|, т. е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний.

Для практики особый интерес представляет случай, когда два складываемых гармонических колебания одинакового направления мало отличаются по частоте. В ре­зультате сложения этих колебаний получаются колебания с периодически изменяющейся амплитудой. Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биениями.

Пусть амплитуды складываемых колебаний равны А, а частоты равны  и +, причем <<. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:

Складывая эти выражения и учитывая, что во втором сомножителе /2<<, найдем

                                                         (144.3)

Результирующее колебание (144.3) можно рассматривать как гармоническое с частотой , амплитуда Аб, которого изменяется по следующему периодическому закону:

                                                      (144.4)

Частота изменения Аб в два раза больше частоты изменения косинуса (так как берется по модулю), т. е. частота биений равна разности частот складываемых колебаний:

Период биений

Характер зависимости (144.3) показан на рис. 204, где сплошные жирные линии дают график результирующего колебания (144.3), а огибающие их — график медленно меня­ющейся по уравнению (144.4) амплитуды.

Определение частоты тона (звука определенной высоты) биений между эталонным и измеряемым колебаниями — наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.

Любые сложные периодические колебания s=f(t) можно представить в виде супер­позиции одновременно совершающихся гармонических колебаний с различными амплитудами, начальными фазами, а также частотами, кратными циклической частоте 0:

               (144.5)

Представление периодической функции в виде (144.5) связывают с понятием гар­монического анализа сложного периодического колебания, илиразложения Фурье.* Слагаемые ряда Фурье, определяющие гармонические колебания с частотами 0, 20, 30, ..., называются первой (или основной),второй, третьей и т. д. гармониками сложного периодического колебания.

* Ж. Фурье (1768—1830) — французский ученый.