Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции.doc
Скачиваний:
67
Добавлен:
18.03.2015
Размер:
353.28 Кб
Скачать

53

Содержание

1. Архитектура ПК……………………………………………………………5

  1. 1.1. Регистры.

  2. 1.1.1 Регистры общего назначения.

1.1.2. Сегментные регистры

1.1.3 Регистр флагов

1.2. Организация памяти.

1.3. Представление данных.

1.3.1 Типы данных

1.3.2 Представление символов и строк

2. Операторы программы на ассемблере ……………………………………

    1. Команды языка ассемблера

2.2. Режимы адресации и форматы машинных команд

3. Псевдооператоры ………………………………………………………….

3.1 Директивы определения данных

3.2 Структура программы на ассемблере

3.2.1 Программные сегменты. Директива assume

3.2.2 Начальная загрузка сегментных регистров

3.2.3 Упрощенная директива сегментации

4. Ассемблирование и компоновка программы ………………………….

5. Команды пересылки данных…………………………………………….

  1. 5.1 Команды общего назначения

  2. 5.2 Команды работы со стеком

5.3 Команды ввода-вывода

5.4 Команды пересылки адреса

5.5 Команды пересылки флагов

6. Арифметические команды ……………………………………………….

  1. 6.1 Арифметические операции над целыми двоичными числами

6.1.1 Сложение и вычитание

6.1.2 Команды приращения и уменьшения приемника на единицу

6.2 Умножение и деление

6.3 Изменение знака

7. Логические операции ………………………………………………….

8. Сдвиги и циклические сдвиги …………………………………………

9. Строковые операции …………………………………………………….

10. Логика и организация программ ………………………………………

10.1 Безусловные переходы

10.2 Условные переходы

10.3 Циклы

10.4 Процедуры в языке ассемблера

10.5 Прерывания INT

10.6 Системное программное обеспечение

      1. DOS

10.6.1.1 Чтение клавиатуры.

10.6.1.2 Вывод символов на экран

10.6.1.3 Завершение программ.

10.6.2 BIOS

10.6.2.1 Выбор режимов дисплея

11. Дисковая память ……………………………………………………………..

11.1 Оглавление диска (каталог)

11.2 Таблица распределения файлов

11.3 Операции ввода-вывода на диск

11.3.1 Запись файла на диск

11.3.1.1 Данные в формате ASCIIZ

11.3.1.2 Файловый номер

11.3.1.3 Создание дискового файла

11.3.2 Чтение дискового файла

Введение

Язык ассемблера — это символическое представление машинного языка. Все процессы в персональном компьютере (ПК) на самом низком, аппаратном уровне приводятся в действие только командами (инструкциями) машинного языка. По-настоящему решить проблемы, связанные с аппаратурой (или даже, более того, зависящие от аппаратуры как, к примеру, повышение быстродействия программы), невозможно без знания ассемблера.

Ассемблер представляет собой удобную форму команд непосредственно для компонент ПК и требует знание свойств и возможностей интегральной микросхемы, содержащей эти компоненты, а именно микропроцессора ПК. Таким образом, язык ассемблера непосредственно связан с внутренней организацией ПК. И не случайно практически все компиляторы языков высокого уровня поддерживают выход на ассемблерный уровень программирования.

Элементом подготовки программиста-профессионала обязательно является изучение ассемблера. Это связано с тем, что программирование на ассемблере требует знание архитектуры ПК, что позволяет создавать более эффективные программы на других языках и объединять их с программами на ассемблере.

В пособии рассматриваются вопросы программирования на языке ассемблера для компьютеров на базе микропрцессоров фирмы Intel.

Данное учебное пособие адресуется всем, кто интересуется архитектурой процессора и основам программирования на языке Ассемблер, в первую очередь, разработчикам программного продукта.

  1. Архитектура ПК.

Архитектура ЭВМ – это абстрактное представление ЭВМ, которое отражает ее структурную, схемотехническую и логическую организацию.

Все современные ЭВМ обладают некоторыми общими и индивидуальными свойствами архитектуры. Индивидуальные свойства присущи только конкретной модели компьютера.

Понятие архитектуры ЭВМ включает в себя:

  • структурную схему ЭВМ;

  • средства и способы доступа к элементам структурной схемы ЭВМ;

  • набор и доступность регистров;

  • организацию и способы адресации;

  • способ представления и формат данных ЭВМ;

  • набор машинных команд ЭВМ;

  • форматы машинных команд;

  • обработка прерываний.

Основные элементы аппаратных средств компьютера: системный блок, клавиатура, устройства отображения, дисководы, печатающие устройства (принтер) и различные средства связи. Системный блок состоит из системной платы, блока питания и ячеек расширения для дополнительных плат. На системной плате размещены микропроцессор, постоянная память (ROM), оперативная память (RAM) и сопроцессор.

    1. Регистры.

Внутри микропроцессора информация содержится в группе из 32 регистров (16 пользовательских, 16 системных), в той или иной мере доступных для использования программистом. Так как пособие посвящено программированию для микропроцессора 8088-i486, то логичнее всего начать эту тему с обсуждения внутренних регистров микропроцессора, доступных для пользователя.

Пользовательские регистры используются программистом для написания программ. К этим регистрам относятся:

  • восемь 32-битных регистров (регистры общего назначения) EAX/AX/AH/AL, EBX/BX/BH/BL, ECX/CX/CH/CL, EDX/DX/DLH/DL, EBP/BP, ESI/SI, EDI/DI, ESP/SP;

  • шесть 16 -,битовых регистров сегментов: CS,DS, SS, ES, FS,GS;

  • регистры состояния и управления: регистр флагов EFLAGS/FLAGS, и регистр указателя команды EIP/IP.

Через наклонную черту приведены части одного 32-разрядного регистра. Приставка E (Extended) обозначает использование 32-разраядного регистра. Для работы с байтами используются регистры с приставками L (low) и H(high), например, AL,CH - обозначающие младший и старший байты 16-разрядных частей регистров.

      1. Регистры общего назначения.

EAX/AX/AH/AL(Accumulator register) –аккумулятор. Используются при умножении и делении, в операциях ввода-вывода и в некоторых операциях над строками.

EBX/BX/BH/BL – базовый регистр (base register), часто используется при адресации данных в памяти.

ECX/CX/CH/CL – счетчик (count register), используется как счетчик числа повторений цикла.

EDX/DX/DH/DL –регистр данных (data register), используется для хранения промежуточных данных. В некоторых командах использование его обязательно.

Все регистры этой группы позволяют обращаться к своим «младшим» частям. Использование для самостоятельной адресации можно только младшие 16- и 8-битовые части этих регистров. Старшие 16 бит этих регистров как самостоятельные объекты недоступны.

Для поддержки команд обработки строк, позволяющих производить последовательную обработку цепочек элементов имеющих длину 32, 16 или 8 бит используются:

ESI/SI (source index register) – индекс источника. Содержит адрес текущего элемента источника.

EDI/DI (distination index register) – индекс приемника (получателя). Содержит текущий адрес в строке приемнике.

В архитектуре микропрцессора на программно-аппаратном уровне поддерживается структура данных – стек. Для работы со стеком есть специальные команды и специальные регистры. Следует отметить, что стек заполняется в сторону меньших адресов.

ESP/SP (stack poINTer register) –регистр указателя стека. Содержит указатель вершины стека в текущем сегменте стека.

EBP/BP (base poINTer register) –регистр указателя базы стека. Предназначен для организации произвольного доступа к данным внутри стека.

1.1.2. Сегментные регистры

В программной модели микропроцессора имеются шесть сегментных регистров: CS, SS, DS, ES, GS, FS. Их существование обусловлено спецификой организации и использования оперативной памяти микропроцессорами Intel. Микропроцессор аппаратно поддерживает структурную организацию программы состоящей из сегментов. Для указания сегментов доступных в данный момент предназначены сегментные регистры. Микропроцессор поддерживает следующие типы сегментов:

  1. Сегмент кода. Содержит команды программы Для доступа к этому сегменту служит регистр CS (code segment register) – сегментный регистр кода. Он содержит адрес сегмента с машинными командами, к которому имеет доступ микропроцессор.

  2. Сегмент данных. Содержит обрабатываемые программой данные. Для доступа к этому сегменту служит регистр DS (data segment register) – сегментный регистр данных, который хранит адрес сегмента данных текущей программы.

  3. Сегмент стека. Этот сегмент представляет собой область памяти, называемую стеком. Микропроцессор организует стек по принципу – первый «пришел», первый «ушел». Для доступа к стеку служит регистр SS (stack segment register) – сегментный регистр стека, содержащий адрес сегмента стека.

  4. Дополнительный сегмент данных. Обрабатываемые данные могут находиться еще в трех дополнительных сегментах данных. По умолчанию предполагается, что данные находятся в сегменте данных. При использовании дополнительных сегментов данных их адреса требуется указать явно с помощью специальных префиксов переопределения сегментов в команде. Адреса дополнительных сегментов данных должны содержаться в регистрах ES, GS, FS (extenSIon data segment registers).

      1. Регистры управления и состояния

Микропроцессор содержит несколько регистров, которые содержат информацию о состоянии, как самого микропроцессора, так и программы, команды которой в данный момент загружены в конвейер. Это:

- регистр указателя команд EIP/IP;

  • регистр флагов EFLAGS/FLAGS.

Используя эти регистры, можно получать информацию о результатах выполнения команд и влиять на состояние самого микропроцессора.

EIP/IP (instruction poINTer register) –указатель команд. Регистр EIP/IP имеет разрядность 32 или 16 бит и содержит смещение следующей выполняемой команды относительно содержимого сегментного регистра CS в текущем сегменте команд. Этот регистр непосредственно недоступен, но изменение его производится командами перехода.

EFLAGS/FLAGS (Flag register) – регистр флагов. Разрядность 32/16 бит. Отдельные биты данного регистра имеют определенное функциональное назначение и называются флагами. Флаг - это бит, принимающий значение 1 ("флаг установлен"), если выполнено некоторое условие, и значение 0 ("флаг сброшен") в противном случае. Младшая часть этого регистра полностью аналогична регистру FLAGS для i8086.

1.1.3 Регистр флагов

Регистр флагов является 32-разрядным, имеет имя EFLAGS (рис.1). Отдельные биты регистра имеют определенное функциональное назначение и называются флагами. Каждому из них присвоено определенное имя (ZF, CF и т.д). Младшие 16 бит EFLAGS представляют 16-разрядный регистр флагов FLAGS, используемый при выполнении программ, написанных для микропроцессора i086 и i286.

31

.

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

AC

V

RF

NT

IOPL

OF

DF

IF

TF

SF

ZF

AF

PF

CF

Рис.1 Регистр флагов

Некоторые флаги принято называть флагами условий; они автоматически меняются при выполнении команд и фиксируют те или иные свойства их результата (например, равен ли он нулю). Другие флаги называются флагами состояний; они меняются из программы и оказывают влияние на дальнейшее поведение процессора (например, блокируют прерывания).

Флаги условий:

CF (carry flag) - флаг переноса. Принимает значение 1, если при сложении целых чисел появилась единица переноса, не "влезающая" в разрядную сетку, или если при вычитании чисел без знака первое из них было меньше второго. В командах сдвига в CF заносится бит, вышедший за разрядную сетку. CF фиксирует также особенности команды умножения.

OF (overflow flag) - флаг переполнения. Устанавливается в 1, если при сложении или вычитании целых чисел со знаком получился результат, по модулю превосходящий допустимую величину (произошло переполнение мантиссы и она "залезла" в знаковый разряд).

ZF (zero flag) - флаг нуля. Устанавливается в 1, если результат команды оказался равным 0.

SF (SIgn flag) - флаг знака. Устанавливается в 1, если в операции над знаковыми числами получился отрицательный результат.

PF (parity flag) - флаг четности. Равен 1, если результат очередной команды содержит четное количество двоичных единиц. Учитывается обычно только при операциях ввода-вывода.

AF (auxiliary carry flag) - флаг дополнительного переноса. Фиксирует особенности выполнения операций над двоично-десятичными числами.

Флаги состояний:

DF (direction flag) - флаг направления. Устанавливает направление просмотра строк в строковых командах: при DF=0 строки просматриваются "вперед" (от начала к концу), при DF=1 - в обратном направлении.

IOPL (input/output privilege level) – уровень привилегий ввода-вывода. Используется в защищенном режиме работы микропроцессора, для контроля доступа к командам ввода-вывода, в зависимости от привилегированности задачи.

NT (nested task) – флаг вложенности задачи. Используется в защищенном режиме работы микропроцессора для фиксации того факта, что одна задача вложена в другую.

Системные флаг:

IF (INTerrupt flag) - флаг прерываний. При IF=0 процессор перестает реагировать на поступающие к нему прерывания, при IF=1 блокировка прерываний снимается.

TF (trap flag) - флаг трассировки. При TF=1 после выполнения каждой команды процессор делает прерывание (с номером 1), чем можно воспользоваться при отладке программы для ее трассировки.

RF (resume flag) – флаг возобновления. Используется при обработке прерываний от регистров отладки.

VM (virtuAL 8086 mode) – флаг виртуального 8086. 1-процессор работает в режиме виртуального 8086. 0- процессор работает в реальном или защищенном режиме.

AC (ALignment check) –флаг контроля выравнивания. Предназначен для разрешения контроля выравнивания при обращении к памяти.

    1. Организация памяти.

Физическая память, к которой микропроцессор имеет доступ, называется оперативной памятью (или оперативным запоминающим устройством - ОЗУ). ОЗУ представляет собой цепочку байтов, имеющих свой уникальный адрес (его номер), называемый физическим. Диапазон значений физических адресов от 0 до 4 Гбайт. Механизм управления памятью полностью аппаратный.

Микропроцессор аппаратно поддерживает несколько моделей использования оперативной памяти:

  • сегментированную модель. В этой модели память для программ делится на непрерывные области памяти (сегменты), а сама программа может обращаться только к данным, которые находятся в этих сегментах;

  • страничную модель. В этом случае оперативная память рассматривается как совокупность блоков фиксированного размера 4 Кбайта. Основное применение этой модели связано с организацией виртуальной памяти, что позволяет использовать для работы программ пространство памяти большее, чем объем физической памяти. Для микропроцессора Pentium размер возможной виртуальной памяти может достигать 4 Тбайта.

Использование и реализация этих моделей зависит от режима работы микропроцессора:

  1. Режим реальных адресов (реальный режим). Режим аналогичный работе i8086 процессора. Необходим для функционирования программ, разработанных для ранних моделей процессоров.

  2. Защищенный режим. В защищенном режиме появляется возможность многозадачной обработки информации, защиты памяти с помощью четырехуровнего механизма привилегий и ее страничной организации.

  3. Режим виртуального 8086. В этом режиме появляется возможность работы нескольких программ для i8086. При этом возможна работа программ реального режима.

Далее рассмотрим только особенности работы с оперативной памятью для реального режима, в котором поддерживается только сегментированная модель организации памяти.

Сегментация – механизм адресации, обеспечивающий существование нескольких независимых адресных пространств. Сегмент представляет собой независимый, поддерживаемый на аппаратном уровне блок памяти.

Каждая программа в общем случае может состоять из любого количества сегментов, но непосредственный доступ она имеет к трем основным: кода, данных и стека – и от одного до трех дополнительных сегментов данных. Операционная система размещает сегменты программы в оперативной памяти по определенным физическим адресам, после чего помещает значения этих адресов в соответствующие регистры. Внутри сегмента программа обращается к адресам относительно начала сегмента линейно, то есть начиная с адреса 0 и заканчивая адресом, равным размеру сегмента. Относительный адрес или смещение, который микропроцессор использует для доступа к данным внутри сегмента, называется эффективным.

Формирование физического адреса в реальном режиме

В реальном режиме диапазон изменения физического адреса от 0 до 1 Мбайт. Максимальный размер сегмента 64 Кбайт. При обращении к конкретному физическому адресу оперативной памяти определяется адрес начала сегмента и смещение внутри сегмента. Адрес начала сегмента берется из соответствующего сегментного регистра. При этом в сегментном регистре содержатся только старшие 16 бит физического адреса начала сегмента. Недостающие младшие четыре бита 20-битного адреса получаются сдвигом значения сегментного регистра влево на 4 разряда. Операция сдвига выполняется аппаратно. Полученное 20-битное значение и является настоящим физическим адресом, соответствующим началу сегмента. То есть физический адрес задается как пара "сегмент:смещение",где "сегмент" (segment) - это первые16 битов начального адресасегмента памяти, которому принадлежитячейка, а "смещение" - 16-битовый адрес этой ячейки, отсчитанный от начала данного сегмента памяти (величина 16*сегмент+смещение дает абсолютный адрес ячейки). Если, например, в регистре CS хранится величина 1234h, тогда адресная пара 1234h:507h определяет абсолютный адрес, равный 16*1234h+507h =12340h+507h = 12847h. Такая пара записывается в виде двойного слова, причем (как и для чисел) в "перевернутом" виде: в первом слове размещается смещение, а вовтором - сегмент, причем каждое из этих словв свою очередь представлено в "перевернутом"виде. Например, пара 1234h:5678h будет записана так:| 78 | 56| 34 | 12|.

Данный механизм образования физического адреса позволяет сделать программное обеспечение перемещаемым, то есть не зависящим от конкретных адресов загрузки его в оперативной памяти.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]