Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
3
Добавлен:
24.03.2024
Размер:
175.75 Кб
Скачать

11. Дигибридное скрещивание — это скрещивание родительских особей, различающихся по двум парам альтернативных призна­ков и, соответственно, по двум парам аллельных генов.

Полигибридное скрещивание — это скрещивание особей, различающихся по нескольким парам альтернативных признаков и, соответственно, по нескольким парам аллельных генов.

Г. Мендель скрещивал растения гороха, отличающиеся по окраске семян (желтые и зеленые) и по характеру поверхности се­мян (гладкие и морщинистые). Скрещивая чистые линии гороха с желтыми гладкими семенами с чистыми линиями , имеющими зеленые морщинистые семена, он получил гибриды первого поколения с желтыми гладкими семенами (доминантные признаки). Затем Мендель скрестил гибриды первого поколения между собой и получил 4 фенотипических класса в соотношении 9:3:3:1, т.е. в результате во втором поколении появилось два новых сочетания признаков: желтые морщинистые и зеленые гладкие. Для каждой пары признаков отмечалось отношение 3:1, характерное для моногибридного скрещивания: во втором поколении получилось ¾ гладких и ¼ морщинистых семян и ¾ желтых и ¼ морщинистых семян.

Следовательно, две пары признаков объединяются у гибридов первого поколения, а затем разделяются и становятся независимыми друг от друга.

Скрещивания, в которых родительские формы различаются по одной паре признаков, называются моногибридными, по двум парам признаков - дигибридными, а по многим – полигибридными.

Первый закон Менделя – закон единообразия гибридов первого поколения: При слиянии родительских гамет формируется генотип гибридов первого поколения (Аа). Все гибриды первого поколения (F1) выглядят одинаково, т.е. имеют одинаковый фенотип, сходный с фенотипом одного из родителей.

При самоопылении гибридов F1 во втором поколении наблюдается расщепление по фенотипу в соотношении 3 : 1 (¾ гладких и ¼ морщинистых семян). Это соотношение выражает во второй закон Менделя – закон расщепления признаков.

В F2 по каждому признаку наследование происходит независимо от другого признака - третий закон Менделя - закон независимого комбинирования признаков.

Условия осуществления менделевских законов.

Мы уже говорили о применимости законов Менделя к растениям, животным и человеку. Однако следует иметь в виду, что действие этих законов может осуществляться только при следующих условиях:

- скрещивания проводятся на диплоидном уровне;

- разные гены должны находиться в негомологичных хромосомах (отсутствие сцепления);

- изучаемые организмы не должны иметь нарушений процесса мейоза, а как результат, равновероятное образование гамет всех возможных типов;

- одновременное созревание мужских и женских половых клеток всех типов, обеспечивающее равновероятное их соединение при оплодотворении;

- отсутствие селективности при оплодотворении гаметами всех типов;

- равновероятная выживаемость мужских и женских гамет всех типов;

- отсутствие селективности в выживаемости зигот всех возможных генотипов;

- равновероятная выживаемость взрослых организмов;

- эксперименты должны проводиться в условиях, не препятствующих нормальному развитию изучаемых признаков;

- должно быть обеспечено получение сравнительно большого числа особей в эксперименте.

Таков перечень основных условий, при которых экспериментатор может быть уверен в отсутствии препятствий в проявлении менделевских закономерностей.

Фенотипический радикал (от греч. phaino - являю, обнаруживаю) - краткая запись генотипа на основе фенотипа, например А-В-.

12. Множественный аллелизм — один из видов взаимодействия аллельных генов, при котором ген может быть представлен не двумя аллелями (как в случаях полного или неполного доминиро­вания), а гораздо большим их числом; при этом члены одной серии аллелей могут находиться в различных доминантно-ре­цессивных отношениях друг с другом. Рассмотрим это на про­стейшем примере — трехчленной серии аллелей, определяющей окраску шерсти у кроликов. Окраска может быть сплошной тем­ной, белой (альбинизм — полное отсутствие пигментации шер­сти) или горностаевой (на фоне общей белой окраски черные кончики ушей, лап, хвоста и мордочки). Ген сплошной окраски доминирует над остальными членами серии; ген горностаевой окраски доминантен по отношению к белой, но рецессивен по отношению к сплошной, а ген белой окраски рецессивен по от­ношению и к сплошной, и к горностаевой. У мухи дрозофилы имеется серия аллелей гена окраски глаз, состоящая из 12 чле­нов: вишневая, красная, коралловая и т. д. до белой, определяе­мой рецессивным геном. У человека также известны множественные аллели для многих признаков, например для ферментов, антигенов и др. Следует иметь в виду, что в генотипе диплоидных организмов могут находиться лишь два гена из серии аллелей. Остальные аллели данного гена в разных сочетаниях будут по­парно входить в генотипы других особей данного вида. Таким образом, множественный аллелизм характеризует разнообразие генофонда целого вида, т. е. является видовым, а не индивиду­альным признаком (в отличие от полимерии).

Примером множественного аллелизма у человека является наличие трех аллелей гена, определяющего наследование групп крови системы АВО.

• система определяется тремя аллелями одного гена I (IA, 1в, 1°); ген I расположен в 9-й хромосоме: 9q34;

• из всей серии аллелей одновременно в генотипе диплоидного организма находятся два аллеля (I°I0, IAIA, IAI°, 1в1в и др.);

• аллели IA, 1в доминантны по отношению к аллелю 1° — полное доминирование, между собой аллели 1А и 1в — кодоминантны;

• доминантный аллель гена может проявлять свое действие в гомо- (IAIA, IBIB) и гетерозиготном организмах (1А1°, 1в 1°), а рецессивный аллель гена — только в гомозиготном организме (1° 1°);

• различные сочетания аллелей в генотипе дают разные фенотипы: 4 группы крови I (0), II (А), III (В), IV (АВ), которые различаются между собой антигенными свойствами эритроцитов. Антигены (агглютиногены) находятся на поверхности эритроцитов (гликокаликс);

• особенностью системы является наличие в сыворотке крови спецефических антител (агглютининов), разноименных по отношению к собственным агглютиногенам (они одновременно находятся в крови);

• разнообразие групп крови обеспечивает фенотипический полиморфизм в популяциях человека по данному признаку.

Ген I обладает 100% пенетрантностью.

Группы крови являются примером однозначной нормы реакции организма (группа крови не изменяется в течение жизни ни при каких изменениях среды).