Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2 курс / Гистология / tsitologia_i_obschaya_gista_bykov

.pdf
Скачиваний:
0
Добавлен:
23.03.2024
Размер:
16.53 Mб
Скачать

Эластин главный белковый компонент эластических волокон. Он составляет более 90% их массы и представлен гликопротеиновыми молекулами, имеющими в состоянии покоя форму скрученных нитей. При растяжении они распрямляются, а после прекращения действия нагрузки — вновь закручиваются. Молекулы эластина ковалентно "сшиты" друг с другом в комплексы, формирующие эластические волокна и пластинки (мембраны).

Структурные компоненты эластических волокон выявляются на электронно-микроскопическом уровне. Каждое во-

локно содержит: (а) центральный светлый (аморфный) компонент, образованный эластином, (б) периферический (микро-

фибриллярный) компонент, состоящий из волоконец толщиной 10-12 нм, образованных гликопротеином фибриллином. Элементы микрофибриллярного компонента частично погружены в аморфный компонент (рис. 10-8).

Рис. 10-8. Ультраструктурная организация волокон эластической системы. Эластическую систему образуют окситалановые волокна (ОТВ), ко-

торые в ходе эластогенеза постепенно превращаются в элауниновые волокна (ЭЛВ), а в дальнейшем -в зрелые эластические волокна (ЗЭВ). Фибробласты первоначально синтезируют микрофибриллы толщиной 10-12 нм, образованные гликопротеином фибриллином, которые связываются друг с другом, формируя ОТВ. Микрофибриллы служат структурной основой для последующего отложения эластина (Э). В ЭЛВ Э постепенно накапливается в центральной части, а микрофибриллы, образующие микрофибриллярный компонент (МФК), оттесняются к периферии и частично разрушаются. Зрелое эластическое волокно (ЗЭВ) содержит два компонента: центральный, аморфный, образованный Э, и периферический, МФК, частично погруженный в аморфный компонент.

Эластическая система — совокупность волокон, обладающих эластическими свойствами. Помимо собственно эла-

стических волокон, являющихся ее основным и наиболее зрелым элементом, к ней относят также окситалановые и элау-

ниновые волокна. Первые образованы микрофибриллами толщиной 10-12 нм, сходными с теми, которые окружают центральный аморфный компонент эластических волокон, вторые по строению занимают промежуточное положение между типичными эластическими и окситалановыми (см. рис. 10-8).

Синтез и взаимосвязь элементов эластической системы. Микрофибриллярный компонент, первоначально синтезируемый фибробластами, как предполагают, служит структурной основой, на которую далее эти клетки откладывают эластин. Поэтому, по мере созревания эластического волокна, эластин постепенно накапливается в его центральной части, а микрофибриллярный компонент оттесняется к периферии волокна и в конечном итоге почти полностью разрушается. Таким образом, формирование эластического волокна (эластогенез) описывается последовательностью:

окситалановое волокно → элауниновое волокно → эластическое волокно (см. рис. 10-8).

В соответствии с этой схемой окситалановые и элауниновые волокна можно рассматривать как незрелые эластические.

Клетки, вырабатывающие эластические волокна (помимо фибробластов) включают: гладкие миоциты, хондробла-

сты и хондроциты. Микрофибриллы входят в состав межклеточного вещества мезангия в почечном клубочке, образуют волокна ресничного пояска (цинновой связки), удерживающие хрусталик.

Структурные изменения эластических волокон, обусловливающие нарушение их функциональных свойств, выявлены при ряде заболеваний, связанных с мутациями генов, кодирующих синтез соответствующих белков. У таких больных выявляется ненормальная растяжимость кожи, повышенная подвижность суставов, аномалии сердца и сосудов. При синдроме Марфана выявлено нарушение синтеза фибриллина (микрофибриллярного компонента эластических волокон). Такие больные погибают в возрасте до 35 лет (при неонатальной форме — в раннем детстве) преимущественно вследствие аномалий органов сердечно-сосудистой системы, неспособных выдерживать нормальные функциональные нагрузки (наиболее часто — вследствие разрыва аорты). Для этого синдрома характерны также изменения кожи, суставов, скелета, смещение хрусталика.

ОСНОВНОЕ АМОРФНОЕ ВЕЩЕСТВО РЫХЛОЙ ВОЛОКНИСТОЙ СОЕДИНИТЕЛЬНОЙ ТКАНИ

Основное аморфное вещество заполняет промежутки между волокнистыми компонентами межклеточного вещества и окружает клетки. При изучении под светооптическим и электронным микроскопами оно имеет аморфное строение, прозрачно, характеризуется базофилией и низкой электронной плотностью. На молекулярном уровне оно обладает сложной организацией и состоит из макромолекулярных гидратированных комплексов протеогликанов (см. рис. 12-3) и структурных гликопротеинов.

Протеогликаны состоят из пептидной цепи, связанной с гликозаминоглишнами (ГАГ). Строение молекулы протеогликанов описано в главе 12.

151

Гликозаминогликаны (ГАГ) крупные неразветвленные отрицательно заряженные гидрофильные полисахаридные молекулы, образованные повторяющимися дисахаридными единицами. Основными ГАГ в организме человека являют-

ся: гиалуроновая кислота, хондроитинсульфат, дерматансульфат, гепарансульфат и гепарин, а также кератансульфат.

За исключением гиалуроновой кислоты, ГАГ связываются с белками, образуя протеогликаны. Присутствие определенных типов ГАГ в различных тканях определяет свойства их межклеточного вещества, в частности, его проницаемость и способность связывать другие молекулы.

Протеогликаны синтезируются в грЭПС и комплексе Гольджи фибробластов, после чего выделяются механизмом экзоцитоза в межклеточное пространство, где они, вероятно, объединяются в крупные протеогликановые агрегаты. Обновление протеогликанов в тканях происходит более интенсивно, чем коллагена. Они разрушаются рядом лизосомальных ферментов клеток соединительной ткани; при дефектах или недостаточности этих ферментов развиваются заболевания, обусловленные накоплением в клетках частично переваренных протеогликанов — мукополисахаридозы.

Распределение гликозаминогликанов в организме человека

Гликозаминогликаны

Органы и ткани

 

 

Гиалуроновая кислота

Хрящ, синовиальная жидкость,

кожа, пуповина, стекловидное тело,

 

аорта

Хондроитинсульфат,

Хрящ, кость, кожа, кровеносные

дерматансульфат

сосуды, сердце

Гепарансульфат,

Базальные мембраны, аорта, арте-

гепарин

рии легкого легкое, печень, кожа, гра-

нулы тучных клеток

Кератансульфат

Хрящ, роговица, межпозвонковый

 

диск (студенистое ядро)

 

 

Функции протеогликанов:

1.взаимодействие с молекулами коллагена (связаны с ними с через каждые 60-65 нм) и влияние на образование коллаге-

новых волокон (способствуют правильной укладке молекул тропоколлагена в фибриллах и фибрилл в волокнах и ограничивают их рост в толщину);

2.обеспечение связи между поверхностью клеток и компонентами межклеточного вещества (фибронектином, лами-

нином и коллагеном). CD44 и синдекан пронизывают плазмолемму, прикрепляясь своим цитоплазматическим участком к элементам цитоскелета (актиновым микрофиламентам), а внеклеточным участком — к компонентам межклеточного вещест-

ва (рис. 10-9).

Аналогичную функцию выполняют интегрины (см. также главы 3 и 4) — адгезивные гликопротеины, которые через белки талин и винкулин связывают актиновые микрофиламенты цитоскелета с коллагеновыми волокнами — непосредственно или опосредованно — через молекулы фибронектина (см. рис. 10-9);

3.играют важную роль в транспорте электролитов и воды благодаря связыванию большого количества молекул воды;

4.связывают, накапливают и выделяют факторы роста (особенно активно эту функцию осуществляют гепарин и гепарансульфат);

152

Рис. 10-9. Различные механизмы связи клеток с компонентами межклеточного вещества. Актиновые микрофиламенты (АКТ) цито-

скелета клеток взаимодействуют с коллагеновыми фибриллами (КФ) посредством ряда молекул — интегринов (ИНТ), синдекана (СИН), CD44, талина (ТАЛ), винкулина (ВИН) и фибронектина (ФН). Протеогликаны СИН и CD44 пронизывают плазмолемму (ПЛ), связывая АКТ и КФ (1). Адгезивные гликопротеины ИНТ связываются с АКТ прямо (3, 4) или с помощью белков ТАЛ и ВИН (2, 5). Взаимодействие ИНТ с КФ осуществляется непосредственно (2, 3) или опосредованно — через молекулы ФН (4, 5).

Наиболее важные протеогликаны рыхлой волокнистой соединительной ткани включают декорин (связывается с коллагеном и регулирует рост его фибрилл), верзикан (связывает поверхность клеток компонентами межклеточного вещества), перлекан, связывающийся с фибронектином и опосредующий прикрепление фибробласта к компонентам межклеточного вещества), синдекан (связывает поверхность клетки с фибронектином), CD44 (связывает поверхность клетки с фибронектином, ламинином и коллагеном).

Структурные гликопротеины представляют собой нефибриллярные белки, которые способствуют образованию базальных мембран, формированию фибрилл в межклеточном веществе, а также опосредуют взаимодействия между клетками и межклеточным веществом (благодаря присутствию соответствующих рецепторов на поверхности клеток). Они характеризуются разветвленной пептидной цепью, с которой связано небольшое количество простых гексоз. К наиболее важным структурным гликопротеинам относят фибронектин, ламинин и энтактин/нидоген.

Фибронектин гликопротеин, синтезируемый фибробластами и другими клетками мезенхимного происхождения, а также эпителиоцитами. Он обеспечивает организацию компонентов межклеточного вещества: взаимодействует с ГАГ, связывается с коллагеном и опосредует прикрепление к нему тромбоцитов, фибробластов и других клеток, влияя на их различные функции (адгезию, подвижность, рост, синтетическую и секреторную активность).

Ламинин гликопротеин, входящий в состав базальных мембран, связывается с молекулами коллагена IV типа и с рецепторами на поверхности клеток.

Энтактин/нидоген связывается с коллагеном IV типа и ламинином, входит в состав плотной пластинки базальной мембраны.

ВОСПАЛЕНИЕ

Координированное взаимодействие различных клеток рыхлой волокнистой соединительной ткани друг с другом и с элементами межклеточного вещества особенно отчетливо проявляется в таких важнейших взаимосвязанных процессах, как

воспаление и регенерация.

Воспаление — эволюционно сформировавшаяся стереотипная защитно-приспособительная реакция на местное по-

вреждение, которая может быть вызвана действием различных факторов — экзогенных (инфекция, травма, ожог, гипоксия и др.) или эндогенных (очаг некроза, гемостаза, отложения солей, иммунных комплексов). Биологический смысл воспаления состоит в ликвидации (или отграничении от здоровой ткани) очага повреждения и вызвавших его патогенных агентов, максимальное анатомическое восстановление ткани с минимальными функциональными нарушениями.

Острое воспаление продолжается от нескольких часов до нескольких суток и характеризуется преимущественным накоплением нейтрофильных Гранулоцитов и белкового экссудата в участке повреждения ткани. Хроническое воспаление развивается в том случае, если острая реакция не обеспечила устранения повреждающего агента. При этом происходит инфильтрация ткани моноцитами, макрофагами и лимфоцитами, пролиферация фибробластов и рост мелких кровеносных сосудов. Процесс регенерации тесно связан с воспалением и обычно начинается сразу же после нейтрализации повреждающего агента.

Клиническими признаками воспаления (в особенности, острого), согласно классическим описаниям, являются: покрас-

нение ткани (rиbor), ее припухлость (tumor), повышение температуры (calor), боль (dolor) и нарушение функции (functio laesa). Хотя воспаление по своей сути служит защитной реакцией, в некоторых случаях его проявления не адекватны выраженности действия патогенного фактора и сами способны вызвать тяжелые повреждения тканей.

Фазы воспаления

В развитии воспалительной реакции традиционно выделяют три взаимосвязанные и частично перекрывающиеся фазы:

153

(1)фазу альтерации, (2) фазу экссудации и (3) фазу пролиферации.

1.Фаза альтерации (от лат. alteratio — изменение, нарушение) характеризуется повреждением тканей и выделением медиаторов воспаления — комплекса биологически активных веществ, отвечающих за возникновение и поддержание воспалительных явлений. Компоненты поврежденных тканей выделяют хемотаксические факторы, в частности, деполимеризованные белково-гликозаминогликановые комплексы, свободные аминокислоты, полипептиды.

Медиаторы воспаления включают: (а) гуморальные медиаторы, поступающие из плазмы крови (кинины, факторы свертывания, производные комплемента) и (б) клеточные медиаторы, содержащиеся в цитоплазме или вырабатываемые в ответ на стимуляцию моноцитами, макрофагами, тучными клетками, Гранулоцитами, тромбоцитами, лимфоцитами и др. клетками (биогенные амины, производные арахидоновой кислоты — эйкозаноиды, лизосомальные ферменты, активные метаболиты кислорода и др.)- Характер и количество выделяемых медиаторов воспаления совместно с природой, выраженностью и распостраненностью действия повреждающего фактора, определяют всю последующую картину воспалительной реакции.

2. Фаза экссудации (от лат. exsudatio — выпотевание) включает: (1) изменения микроциркуляторного русла, (2) формирование жидкого (бесклеточного) экссудата (3) формирование клеточного экссудата (эмиграцию лейкоцитов),

(1)Изменения микроциркуляторного русла. Реакция сосудов в очаге воспаления начинается с кратковременного (длительностью от нескольких секунд до нескольких минут) спазма мелких артерий и артериол, который сменяется их расширением (позднее — также капилляров и венул. Возникает артериальная, а затем и венозная гиперемия (продолжается от нескольких часов — до нескольких суток), которая проявляется типичными местными признаками воспаления — покраснением ткани и повышением ее температуры. Механизм гиперемии связан с выделением вазоактивных веществ — медиаторов воспаления (гистамина, кининов, серотонина, ФАТ, лейкотриенов и др.) макрофагами, тучными клетками, базофилами, эндотелиальными клетками и тромбоцитами.

(2)Формирование жидкого (бесклеточного) экссудата. Факто рами, обеспечивающими усиленную экссудацию жидкой части крови в ткани служат:

(а) Резкое увеличение проницаемости стенок микрососудов (наиболее выраженное в венулах) в очаге воспаления под действием указанных медиаторов, а также микробных ферментов. Происходит в результате усиления везикулярного транспорта, а также сокращения эндотелиальных клеток с появлением щелей между ними.

(б) Повышение гидростатического давления в сосудах вследствие гиперемии ткани.

(в) Увеличение осмотического и онкотического давления в очаге воспаления (в результате альтерации тканей с расщеп-

лением макромолекул).

Отек ткани возникает вследствие усиленной экссудации жидкой части крови в участок воспаления при снижении активности венозного оттока и лимфооттока и клинически проявляется возникновением припухлости. Выделение кининов и повышенное гидростатическое давление обусловливают боль в области очага воспаления и нарушение функции органа.

Экссудация способствует притоку в очаг альтерации: (а) бактерицидных факторов сыворотки (антител, компонентов комплемента); (б) ИФНу — неспецифического противовирусного агента; (в) фибриногена, превращающегося в фибрин (который играет роль цементирующего вещества, связывающего различные ткани, является барьером, препятствующим распространению микроорганизмов, и фактором, усиливающим их поглощение фагоцитами); (г) фибронектина, оказывающего на лейкоциты хемоаттрактантное и адгезивное действие.

Замедление кровотока в расширенных сосудах усугубляется нарушениями реологических свойств крови в результате ее сгущения и изменения состава (из-за усиленной экссудации), что способствует маргинации (краевому стоянию), адгезии и последующей эмиграции (выселению) лейкоцитов. При резком повреждении эндотелия проницаемость его пласта может увеличиваться столь значительно, что будет происходить выход (диапедез) эритроцитов за пределы сосудистого русла.

(3) Формирование клеточного экссудата (эмиграция лейкоцитов). По мере замедления кровотока активируются ад-

гезивные взаимодействия лейкоцитов с эндотелиальными клетками (преимущественно посткапиллярных венул): сначала усиливается их качение по поверхности эндотелия, в дальнейшем оно сменяется прочным прикреплением лейкоцитов к эндотелию и их распластыванием по его поверхности. Эти процессы обусловливаются изменением экспрессии адгезивных молекул на поверхности как эндотелия сосудов, так и лейкоцитов, вызванным локальным действием цитокинов и медиаторов воспалительных реакций (см. главу 7).

После прикрепления к стенке микрососудов лейкоциты мигрируют через межклеточные промежутки в эндотелиальной выстилке и базальную мембрану за пределы сосуда. Этот процесс обычно занимает от 3 до 30 мин. (интервалы очень вариабельны). Далее они перемещаются по межклеточному веществу в очаг повреждения тканей под действием хемотаксических факторов.

Клеточный состав экссудата на разных сроках после альтерации определяется закономерной избирательностью и последовательностью эмиграции отдельных видов лейкоцитов в участок повреждения тканей. Он обусловлен (а) природой повреждающего агента (например, характером продуктов жизнедеятельности микроорганизмов и веществ, образующихся в тканях под влиянием микробных ферментов); (б) особенностями медиаторов воспаления, выделяющихся в ответ на повреждение; (в) дифференциальной (меняющейся во времени) экспрессией адгезивных молекул на эндотелии и лейкоцитах при их

154

стимуляции (в значительной мере связанной с действием медиаторов воспаления). Последовательное выселение в очаг клеток различных типов соответствует тем задачам, которые каждый из них способен выполнить исходя из своих функциональных особенностей.

Нейтрофильные гранулоциты, как правило, наиболее активно выселяются в ткань на начальных этапах острого воспаления (первые 6-24 ч). Они появляются в очаге уже через 10 мин., а через 4-6 ч их содержание в нем обычно достигает пика (составляя более 90% всех клеток). Нейтрофильные гранулоциты в очаге воспаления благодаря наличию мощных антимикробных систем (см. главу 7) выполняют фагоцитарную и микробицидную функции, блокируя проникновение микроорганизмов в окружающие ткани внутренней среды. Продукты их распада, а также вещества, выделяющиеся из полностью или частично разрушенных микробных клеток, вызывают приток новых нейтрофилов, а позднее — моноцитов и макрофагов.

Моноциты преобладают в экссудате через 16-24 ч, их содержание в очаге максимально обычно на третьи сутки. Одновременно с ними или несколько позднее эмигрируют лимфоциты. Моноциты крови, которые интенсивно выселяются в очаг воспаления, последовательно превращаются в незрелые, а в дальнейшем — в зрелые макрофаги (см. главу 7). Макрофаги сначала концентрируются по периферии зоны повреждения, содержащей живые и погибшие нейтрофильные гранулоциты, затем проникают вглубь нее. Они активируются под действием цитокинов и микробных продуктов и фагоцитируют погибшие нейтрофилы, клеточный детрит и микроорганизмы, формируя второй отграничивающий (антимикробный) барьер. Однако роль макрофагов, очевидно, не сводится к фагоцитозу и уничтожению патогенного агента, а включает выявление его антигенных детерминант и инициацию иммунной реакции (антиген-представляющая функция).

Хроническое воспаление. Описанные защитные гуморальные и клеточные механизмы, участвующие в острой воспалительной реакции обычно устраняют патогенный фактор в течение 4-6 нед. (в большинстве случаев — за 1.5-2 нед.). Если этого не происходит в указанные сроки, то говорят о том, что воспалительный процесс приобретает хроническое течение. По мнению ряда авторов, в некоторых случаях воспаление изначально может развиваться как хроническое. При хроническом воспалении в очаге численно преобладают макрофаги и лимфоциты, которые часто образуют компактные скопления — гранулемы. Макрофаги в очаге хронического воспаления способны преобразовываться: сливаясь друг с другом, они формируют гигантские многоядерные клетки, а дифференцируясь в элементы, специализированные на секреции различных регуляторных веществ, превращаются в эпителиоидные клетки (см. главу 7). Хроническое воспаление может нередко иметь очень длительное течение, так как клетки, образующие его очаги (макрофаги, лимфоциты, фибробласты, Гранулоциты и др.), выделяют различные стимулирующие факторы, способствующие его самоподдержанию.

3. Фаза пролиферации (продуктивная фаза, или фаза репарации). Макрофаги, лимфоциты и другие клетки,

инфильтрирующие очаг воспаления, выделяют ряд биологически активных веществ (фибронектин, ИЛ-1, ФНО, ТРФР, ТФР(3 и др.), которые вызывают: (1) хемотаксис, пролиферацию и стимуляцию синтетической активности фибробластов,

(2)активацию образования и роста сосудов (ангиогенез).

Врезультате привлечения в очаг воспаления фибробластов, их усиленной пролиферации и активной синтетической деятельности, а также быстрому разрастанию мелких сосудов формируется богато васкуляризованная молодая рыхлая волокнистая соединительная ткань с высоким содержанием различных клеточных элементов — грануляционная ткань. В этой ткани постепенно откладывается все большее количество коллагеновых волокон и она со временем из рыхлой преобразуется в плотную, которая формирует рубец.

Благодаря использованию методов тканевой инженерии получены культуры интенсивно пролиферирующих и синтетически активных фибробластов человека, которые вводят в плохо заживающие кожные раны. После трансплантации такие клетки обеспечивают активную выработку межклеточного вещества, заполняющего раневой дефект; одновременно их секреторные продукты стимулируют процессы регенерации поврежденной эпителиальной ткани. Тем самым удается достичь высокого клинического эффекта заживления ран.

Чрезмерному отложению коллагена и других компонентов межклеточного вещества препятствуют: (1) гибель значительного количества активных фибробластов механизмом апоптоза по мере созревания ткани, (2) снижение синтетической активности оставшихся фибробластов, (3) повышение коллагенолитической активности фибробластов и макрофагов. В перестройке рубца и его частичной инволюции принимают участие также Гранулоциты (например, эозинофилы), лимфоциты и тучные клетки.

Роль рыхлой волокнистой соединительной ткани в регенерации различных органов и тканей неоднозначна. При гибели участка органа вследствие каких-либо патологических процессов имеющаяся в органе рыхлая волокнистая соединительная ткань активно реагирует на повреждение и способна, разрастаясь и преобразуясь в соответствии с описанной выше последовательностью, заполнять участки погибшей функционально ведущей ткани органа. Такая регенерация органа называется неполной (заместительной), поскольку соединительная ткань лишь замещает ранее имевшуюся ткань, но не может компенсировать ее утраченную функцию.

Если поврежденная функционально ведущая ткань органа неспособна к регенерации на тканевом и кле-

точном уровнях, то соединительная ткань играет в целом полезную роль, замещая образующийся дефект и связывая ее

155

неповрежденные участки. Так, при инфаркте миокарда, вызванном острым нарушением кровоснабжения отдельного участка сердечной мышцы, на месте погибшей и неспособной к регенерации сердечной мышечной ткани возникает соединительнотканный рубец, который обеспечивает целостность мышечной оболочки сердца. Однако этот участок миокарда функционально неполноценен, поскольку он не обеспечивает необходимой сократительной функции. Более того, при значительных размерах рубца он может постепенно мешковидно растягиваться (вследствие высокого давления в камерах сердца), формируя аневризму сердца (от греч. aneuryno — расширение), которая со временем истончается и в конечном итоге разрывается, вызывая мгновенную смерть больного.

Если функционально ведущая ткань органа способна к регенерации на тканевом и клеточном уровнях, то быстро разрастающаяся волокнистая соединительная ткань во многих случаях может препятствовать нормальному течению этого процесса. Так, опережая восстановление функционально ведущих тканей и формируя рубцы, она способна нарушать регенерацию нервов, скелетных мышц и стенки полых органов, содержащих гладкую мышечную ткань (например, матки, маточной трубы, мочеточника, кишки).

Соединительнотканные рубцы, возникающие в различных органах после повреждений, могут изменить их архитектонику, деформировать, сузить просвет (вплоть до его полной облитерации), вызвать смешение (при образовании спаек в плевральной, брюшной полости или сердечной сумке), нарушить кровоснабжение и иннервацию. Рубцовые изменения клапанов сердца способны полностью нарушить его функцию.

ПЛОТНАЯ ВОЛОКНИСТАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ

Плотная волокнистая соединительная ткань образована теми же компонентами, что и рыхлая волокнистая соединительная ткань, отличаясь от нее (1) очень высоким содержанием волокон (преимущественно коллагеновых), формирую-

щих толстые пучки и занимающих основную часть объема ткани, (2) малым количеством основного аморфного вещества в составе межклеточного вещества (3) сравнительно низким содержанием клеточных элементов и (4) преобладанием одного

(главного) типа клеток — фиброцитов — над остальными (особенно в плотной оформленной ткани).

Главное свойство плотной волокнистой соединительной ткани — очень высокая механическая прочность — обу-

словлено присутствием мощных пучков коллагеновых волокон. Ориентация этих волокон соответствует направлению действия сил, вызывающих деформацию ткани.

Плотная волокнистая неоформленная соединительная ткань характеризуется неупорядоченным распо-

ложением пучков коллагеновых волокон в трех различных плоскостях, которые переплетаются между собою, формируя трехмерную сеть (рис. 10-10). Последняя обеспечивает прочность ткани при воздействии деформирующих сил любой направленности. Помимо коллагеновых волокон, имеются также и эластические, также формирующие трехмерную сеть. Содержание основного аморфного вещества невелико, клетки немногочисленны. Среди клеток преобладают фиброциты и фибробласты, но встречаются и другие клеточные элементы (тучные клетки, гистиоциты, лейкоциты). Малодифференцированные элементы сосредоточены в тонких прослойках рыхлой волокнистой ткани, окружающих сосуды. Такая ткань образует глубокий (сетчатый) слой дермы (соединительнотканной части коки), капсулы различных органов. Ткань, образующая капсулы, отличатся более упорядоченным расположением коллагеновых волокон (преимущественно параллельно поверхности органа), чем в сетчатом слое дермы, благодаря чему отчасти напоминает плотную волокнистую оформленную соединительную ткань.

Плотная волокнистая оформленная соединительная ткань содержит толстые пучки коллагеновых воло-

кон, располагающиеся параллельно друг другу (в направлении действия нагрузки), которые связаны небольшим количеством основного аморфного вещества (рис. 10-11). Между ними специальными красителями можно выявить тонкие сети эластических волокон. Содержание клеток невелико; среди них подавляющее большинство составляют фиброциты. Описанное строение имеет ткань, образующая сухожилия, связки, фасции и апоневрозы.

156

Рис. 10-10. Плотная волокнистая неоформленная соединительная ткань (сетчатый слой дермы). Основной объем в ткани занимают толстые пучки коллагеновых волокон, идущие в различных направлениях и переплетающиеся между собой. На срезе видны продольные (ПР), поперечные (ПО) и косые (К) сечения пучков коллагеновых волокон. Клетки — фиброциты (ФЦ) — немногочисленны.

Сухожилия представляют собой удлиненные цилиндрические или уплощенные образования, которые связывают поперечнополосатую соматическую мышцу с костью. Они образованы плотно упакованными параллельными пучками коллагеновых волокон, между которыми располагаются ряды фиброцитов, которые именуют также сухожильными клетками, или тендиноцитами (от лат. tendo — сухожилие). Последние характеризуются удлиненными ядрами, ориентированными вдоль оси сухожилия (параллельно коллагеновым пучкам), и слабо оксифильной цитоплазмой, трудно различимой на уровне светового микроскопа. Периферические участки цитоплазмы образуют уплощенные пластинчатые отростки, охватывающие пучки коллагеновых волокон. На поперечных срезах сухожилия его клетки имеют звездчатую форму; специальными исследованиями показано, что своими отростками они латерально контактируют друг с другом, формируя типичные щелевые соединения, которые связывают клетки электрически и химически. При этом фиброциты образуют единую систему (подобную той, что объединяет остеоциты в костной ткани — см. главу 12). Так как клеточные отростки посредством интегринов связаны с коллагеновыми волокнами, малейшие изменения нагрузки передаются на клетки и влияют на активность их синтетических процессов, регулируя выработку компонентов межклеточного вещества.

Рис. 10-11. Плотная волокнистая оформленная соединительная ткань (сухожилие). 1 — поперечный разрез сухожилия (третичного сухожильно-

го пучка), 2 — поперечный и 3 — продольный разрез вторичного сухожильного пучка. ПСП — первичные сухожильные пучки, ФЦ — фиброциты. ВСП — вторичные сухожильные пучки, ЭТ — эндотендиний, КРС — кровеносные сосуды, ПТ — перитендиний.

Сухожилие как орган включает: (1) компоненты, образованные плотной волокнистой соединительной тканью — пучки коллагеновых волокон различных порядков с расположенными между ними фиброцитами; (2) оболочки (прослойки) из рыхлой и плотной неоформленной соединительных тканей, окружающие пучки коллагеновых волокон и несущие кровеносные сосуды и нервы. В сухожилии выделяют первичные, вторичные и третичные сухожильные пучки (см. рис. 10-6 и 10-11).

Первичные сухожильные (коллагеновые) пучки (пучки первого порядка) располагаются между рядами фиброци-

тов.

157

Вторичные сухожильные (коллагеновые) пучки (пучки второго порядка) образованы группой первичных пуч-

ков, окруженных снаружи оболочкой из рыхлой волокнистой неоформленной соединительной ткани — эндотендинием, в которой проходят кровеносные и лимфатические сосуды и нервные волокна.

Третичные сухожильные (коллагеновые) пучки (пучки третьего порядка) состоят из нескольких вторичных пучков, которые окружены снаружи оболочкой из плотной волокнистой неоформленной соединительной ткани — перитендинием, отдающего вглубь сухожилия прослойки эндотендиния.

Сухожилие в целом может представлять собой третичный пучок, в некоторых случаях оно складывается из нескольких третичных пучков, окруженный общей оболочкой — эпитендинием.

Связки соединяют кости друг с другом и по строению сходны с сухожилиями, отличаясь от них несколько менее строго ориентированным расположение коллагеновых волокон. В большинстве связок преобладают коллагеновые волокна, однако в некоторых из них (желтые связки, соединяющих позвонки, голосовые связки, а также подвешивающая связка полового члена) функционально ведущими элементами служат толстые пучки эластических волокон, разделенные тонкими прослойками коллагеновых волокон и рядами фиброцитов. Такие связки называют эластическими.

Фасции и апоневрозы также образованы плотной волокнистой соединительной тканью, в которой пучки коллагеновых волокон и фиброциты располагаются в виде пластин (мембран). В каждой пластине волокна располагаются параллельно друг другу, но они могут менять свое направление в различных пластинах.

158

Глава 11

СОЕДИНИТЕЛЬНЫЕ ТКАНИ СО СПЕЦИАЛЬНЫМИ СВОЙСТВАМИ

ОБЩИЕ СВЕДЕНИЯ

Соединительные ткани со специальными свойствами включают жировую, ретикулярную, слизистую и пигментную ткани. Они выполняют ряд важных специализированных функций и (за исключением широко распространенной в организме жировой ткани) характеризуются строго определенной топографией. Эти ткани родственны волокнистым соединительным тканям, причем их клетки способны вырабатывать межклеточное вещество, содержащее волокна. Более того, ряд клеток, численно преобладающих в отдельных видах этих тканей (например, жировые и пигментные клетки), в умеренном количестве могут встречаться в качестве нормальных компонентов и в рыхлой волокнистой соединительной ткани. Клетки соединительных тканей со специальными свойствами, вырабатывающие волокна, по своему происхождению, строению и функциям близки фибробластам. Даже столь морфологически несхожие с фибробластами зрелые жировые клетки развиваются из фибробластоподобных предшественников, вновь превращаясь в них после утраты жировых включений (при голодании).

ЖИРОВАЯ ТКАНЬ: ОБЩАЯ ХАРАКТЕРИСТИКА

Жировая ткань представляет собой особую разновидность соединительных тканей со специальными свойствами, в которой основной объем занимают жировые клетки — адипоциты (от лат. adeps — жир и cytos, или kytos — клетка). Она повсеместно распространена в организме и составляет в норме около 15-20% массы тела у мужчин и порядка 20-25% — у женщин. Абсолютная масса жировой ткани (10-20 кг у здорового человека) способна резко изменяться при патологических состояниях. При ожирении (которым страдает в развитых странах не менее 30% взрослого населения) она увеличивается до 40-100 кг и более, при голодании или нервной анорексии (потере аппетита) — может снижаться до 3% нормального уровня. Аномалии содержания и распределения жировой ткани связаны с рядом генетических нарушений и эндокринных расстройств и нередко служат диагностически важными признаками заболеваний.

Функции жировой ткани:

1.Энергетическая (трофическая) — благодаря накоплению липидов, служащих в организме резервными источниками энергии (легко формируются в периоды избыточного питания и обеспечивают необходимые потребности организма в периоды голодания).

2.Опорная, защитная и пластическая — жировая ткань полностью или частично окружает различные органы (почки, глазное яблоко, лимфатические узлы, сосудисто-нервные пучки, суставы и др.) и заполняет пространства между ними; смягчая удары, она защищает их от возможных механических травм, служит опорным и фиксирующим элементом (резкое похудание, например, может привести к смещению почек). Она замещает ткань некоторых органов после их инволюции (тимуса, молочной железы, костного мозга).

3.Теплоизолирующая — жировая ткань обладает свойствами теплоизолятора, благодаря чему она препятствует чрезмерной потере тепла организмом (что особенно важно для человека, в отличие от животных, лишенного шерсти). С этим ее свойством, вероятно, связано то, что у северных народов, например, подкожная жировая клетчатка обычно лучше развита, чем у живущих в средней полосе.

4.Теплопродуцирующая — часть энергии, образованной вследствие окисления энергоемких молекул жиров, превращается в тепло. Один из видов жировой ткани (бурая жировая ткань — см. ниже) специализирован на выработке значительного количества тепла в результате преобразования в него почти всей полученной при окислении жиров энергии, отчего такую ткань называют "химической печкой".

5.Регуляторная (в процессах миелоидного кроветворения) — жировые клетки входят в состав стромального компонента красного костного мозга, формируя микроокружение развивающихся форменных элементов крови, обеспечивая их питательными веществами и воздействуя на них факторами роста. Изменяя свой объем, жировые клетки влияют на давление внутри мелких костных полостей, содержащих красный костный мозг, и тем самым участвуют в регуляции скорости миграции созревших элементов в сосуды.

6.Депонирующая — жировая ткань накапливает жирорастворимые витамины (A, D, Е, К) и служит крупным депо стероидных гормонов (особенно эстрогенов — женских половых гормонов).

7.Эндокринная — синтезирует эстрогены и гормон, регулирующий потребление пищи — лептин.

Классификация жировой ткани

У млекопитающих, включая человека, имеются два вида жировой ткани — белая и бурая, которые различаются по цвету (что отражено в их названиях), распределению в организме, метаболической активности, строению образующих их клеток (адипоцитов) и степени кровоснабжения.

БЕЛАЯ ЖИРОВАЯ ТКАНЬ

159

Белая жировая ткань является преобладающим видом жировой ткани у человека. Она нередко имеет желтоватый оттенок из-за высокого содержания каротиноидов, растворенных в жировой капле адипоцитов.

Распределение белой жировой ткани в организме неравномерно: она образует скопления, которые подразделяются на поверхностные и глубокие. Поверхностные скопления располагаются преимущественно подкожно и образуют гиподерму (слой подкожной жировой клетчатки — от греч. hypo — под и derma — кожа). Глубокие (висцеральные) скопления белой жировой ткани сосредоточены в области сальника, брыжейки кишки, в забрюшинном пространстве.

Половые различия распределения жировой ткани в организме (у мужчин преимущественно в верхней половине тела, у женщин — в нижней) обусловливают характерные половые особенности контуров фигуры. Они возникают под влиянием половых гормонов при половом созревании, до которого топография жировой ткани у мальчиков и девочек сходна.

ГИСТОГЕНЕЗ БЕЛОЙ ЖИРОВОЙ ТКАНИ

Жировая ткань в эмбриогенезе развивается из мезенхимы; наиболее ранним предшественником адипоцитов служат малодифференцированные фибробласты (фибробластоподобные клетки), лежащие по ходу мелких кровеносных сосудов. Они превращаются в преадипоциты, которые прекращают деление и постепенно преобразуются в адипоциты (рис. 11-1). В ходе дифференцировки в цитоплазме преадипоцитов появляются ферменты, ответственные за синтез липидов (главным маркером этого превращения служит липопротеиновая липаза), и скопления гликогена, а позднее образуются мелкие липидные капли. В дальнейшем мелкие капли сливаются друг с другом, образуя одну крупную каплю, смещающую остальную часть цитоплазмы и ядро к периферии. Клетки утрачивают отростки и приобретают сферическую форму; щелевые соединения между ними исчезают.

Рис. 11-1. Образование клеток белой жировой ткани из фибробластоподобного предшественника (ФБП) путем постепенного накоп-

ления липидных включений (ЛВ). При липогенезе формируются отдельные жировые капли, которые сливаются в единую, оттесняющую ядро и большую часть органелл к одному из полюсов. Клетка приобретает перстневидное строение. Предполагается, что при голодании, вызывающем усиление процессов липолиза, возможны обратные морфологические преобразования с формированием множественных жировых капель из одной и последующим их уменьшением и исчезновением. ПАЦ — преадипоциты, АЦ — адипоцит.

Дифференцировка адипоцитов связана с перестройкой цитоскелета и изменением синтеза около 100 белков. В частности, угнетается синтез коллагенов I и III типов и фибронектина, усиливается продукция коллагенов IV и VI типов и других белков (энтактина и нидогена), которые участвуют в биогенезе базальной мембраны. Сходный процесс происходит в адипоцитах, которые утратили липидные включения в результате длительного голодания (и приняли вид фибробластоподобных клеток), когда они вновь накапливают липиды после возвращения к нормальному питанию.

В ходе развития размер отдельных адипоцитов увеличивается в 7-10 раз, а масса всей жировой ткани — в 300-1000 раз. Особенно интенсивно накопление жировой ткани происходит в последний триместр беременности, поэтому ее слабое развитие у новорожденного служит одним из признаков недоношенности. С возрастом число мелких адипоцитов снижается, а крупных — нарастает. Изменения объема жировой ткани в отдельных участках тела после полового созревания связаны с появлением регионарных различий в чувствительности адипоцитов к гормональным влияниям, обусловливающим их гипертрофию. В старческом возрасте объем жировой ткани нередко падает.

Регуляция дифференцировки адипоцитов из предшественников осуществляется гормоном роста (ГР) гипофиза, ти-

реоидными гормонами и инсулиноподобным фактором роста-1. Нормальное развитие адипоцитов обеспечивается также их адгезивными взаимодействиями с другими клетками и компонентами межклеточного вещества (коллагеном, фибронектином), оказывающими влияние на их мембранные рецепторы и цитоскелет (через интегрины).

СТРОЕНИЕ БЕЛОЙ ЖИРОВОЙ ТКАНИ

Белая жировая ткань состоит из долек (компактных скоплений адипоцитов), разделенных тонкими прослойками рыхлой волокнистой соединительной ткани, несущими кровеносные сосуды и нервы (рис. 11-2). Кровеносные капилляры и отдельные нервные волокна проникают внутрь долек, располагаясь в узких щелевидных пространствах между адипоцитами. Хотя адипоциты занимают основную часть объема жировой ткани, они составляют, по разным оценкам, лишь 20-60% числа ее клеток. Остальная часть приходится на клетки-предшественники адипоцитов, макрофаги, клетки сосудов и лейкоциты крови. Общее число адипоцитов в жировой ткани человека составляет 20-30×109 клеток; при ожирении оно может достигать 100×109 клеток. Химически белая жировая ткань на 60-85% представлена липидами, на 5-30% — водой и на 2-3% — белками.

160

Соседние файлы в папке Гистология