Добавил:
nastia.sokolowa2017@yandex.ru Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы к экзамену по Физике 1 курс.docx
Скачиваний:
0
Добавлен:
19.02.2024
Размер:
389.8 Кб
Скачать

5. При поступательном движении в каждый заданный момент времени любая точка тела совершает поворот вокруг своего мгновенного центра поворота, причём длина радиуса в данный момент одинакова для всех точек тела. Одинаковы по величине и направлению и векторы скорости точек тела, а также испытываемые ими ускорения.

Основное уравнение динамики поступательного движения произвольной системы тел

Скорость изменения импульса системы равна главному вектору всех внешних сил, действующих на эту систему.

Второй закон Ньютона - основной закон динамики поступательного движения - отвечает на вопрос, как изменяется механическое движение материальной точки (тела) под действием приложенных к ней сил. Рассматривая действие различных сил на данную материальную точку (тело), то ускорение, приобретаемое телом, всегда прямо пропорционально равнодействующей данных приложенных сил:

При действии одинаковой силы на тела с различными массами ускорения тел оказываются различными, а именно

(2)

Учитывая (1) и (2) и то, что сила и ускорение - величины векторные, можем записать

(3)

Соотношение (3) есть второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки (тела). В системе измерений СИ коэффициент пропорциональности k= 1. Тогда

или

Учитывая, что масса материальной точки (тела) в классической механике постоянна, в выражении (4) массу можно внести под знак производной:

Векторная величина

численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости, называется импульсом (количеством движения) этой материальной точки. Подставляя (6) в (5), получим

Это выражение - более общая формулировка второго закона Ньютона: скорость изменения импульса материальной точки равна действующей на нее силе.

6. Закон сохранения момента импульса (закон сохранения углового момента) — один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.

Система тел, не взаимодействующих с другими телами, не входящими в эту систему, называется замкнутой системой.

P-Импульс

(с векторами)

Абсолютно упругий удар — столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию. При абсолютно упругих столкновениях механическая энергия системы тел сохраняется. Интуитивным примером может стать соударение бильярдных шаров или отскакивание теннисного мячика от твёрдой поверхности. Столкновения молекул, атомов и элементарных частиц в ряде случаев хорошо подчиняются законам протекания упругого удара, хотя они и взаимодействуют лишь посредством полей, в первую очередь электромагнитных. Для абсолютно упругого удара выполняются закон сохранения импульса и закон сохранения кинетической энергии.

Обозначим скорости шаров массами m1 и m2 до удара через v1 и v2, после удара — через v'1 и v'2 (рис. 18). При прямом центральном ударе векторы скоростей шаров до и после удара лежат на прямой линии, соединяющей их центры. Проекции векторов скорости на эту линию равны модулям скоростей. Их направления учтем знаками: положительное значение припишем движению вправо, отрицательное — движению влево.

При указанных допущениях законы сохранения имеют вид

7. Абсолютно неупругий удар – это столкновение двух тел, в результате которого тела объединяются и двигаются дальше, как единое целое.

Продемонстрировать абсолютно неупругий удар можно также с помощью шаров из пластилина (глины), движущихся навстречу друг другу. Если массы шаров  m1  и  m2, их скорости до удара   , то, используя закон сохранения импульса, можно записать:

 

 (5.6.1)

 

где    – скорость движения шаров после удара. Тогда

 

 (5.6.2)

 

       Если шары двигались навстречу друг другу, то они вместе будут продолжать двигаться в ту сторону, в которую двигался шар, обладающий большим импульсом. В частном случае – если массы и скорости шаров равны, то

       Выясним, как меняется кинетическая энергия шаров при центральном абсолютно неупругом ударе. Так как в процессе соударения шаров между ними действуют силы, зависящие не от самих деформаций, а от их скоростей, то мы имеем дело с силами, подобными силам трения, поэтому закон сохранения механической энергии не должен соблюдаться. Вследствие деформации происходит «потеря» кинетической энергии, перешедшей в тепловую или другие формы энергии (диссипация энергии). Эту «потерю» можно определить по разности кинетических энергий до и после удара:

.

       Отсюда получаем:

 

 (5.6.3)

 

       Если ударяемое тело было первоначально неподвижно ( υ2 = 0 ), то

       Когда  m2 >> m1  (масса неподвижного тела очень большая), то     и почти вся кинетическая энергия при ударе переходит в другие формы энергии. Поэтому, например, для получения значительной деформации наковальня должна быть массивнее молотка.

       Когда   тогда   и практически вся энергия затрачивается на возможно большее перемещение, а не на остаточную деформацию (например, молоток – гвоздь).

       Абсолютно неупругий удар – пример того, как происходит «потеря» механической энергии под действием диссипативных сил.

8. Работа силы - Количественная характеристика процесса обмена энергией между взаимодействующими телами.

Работа силы в механике равна произведению силы и перемещения тела, к которому была приложена сила:

Работа постоянной силы F, составляющей угол α с направлением прямолинейного движения тела

 Работа этой силы равна произведе­нию проекции силы Fs на направ­ление перемещения (Fs = F cos α), умноженной на перемещение точ­ки приложения силы.

Элементарная работа силы   на перемещении 

   [α — угол между векторами   и   ; ds = |   | — элементарный путь; Fs — проекция вектора   на вектор   ]

♦ Работа — величина скалярная.

Работа силы на участке траектории 1—2_

   Для вычисления этого интеграла надо знать зависимость Fs от s вдоль траектории 1—2 (пример на ри­сунке).

Геометрический смысл выраже­ния для А: искомая работа опреде­ляется на графике площадью за­крашенной фигуры.

Единица работы___________________________________________________________________________