Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

материалы по экзамену теплотехника

.doc
Скачиваний:
43
Добавлен:
15.03.2015
Размер:
812.54 Кб
Скачать

При поверочном расчете теплообменников поверхность теплообмена задана.

Известны также начальные температуры жидкостей и их расходные теплоемкости. Искомыми являются конечные температуры и передаваемый тепловой поток. В приближенных расчетах принимают, что температуры рабочих жидкостей изменяются по линейному закону. В точных расчётах используют метод последовательных приближений.Сущность этого метода заключается в следующем. Задаются температурой t”ж1 горячей жидкости на выходе из теплообменного аппарата и из (12.13) находят передаваемый тепловой поток и температуру t”ж2 холодной жидкости на выходе из теплообменного аппарата.

(12.27)




Затем определяют значение Q из (12.24). Если значение Q, определённое из (12.24), оказывается большим его же значения, рассчитанного с помощью выражения (12.13), значение t”ж1 уменьшают и повторяют расчёт. В противном случае t”ж1 увеличивают и снова повторяют расчёт. Эту процедуру продолжают до тех пор, пока последующее значение Q не будет отличаться от предыдущего на некоторую заранее заданную величину. Например, на величину, не превышающую одного процента предыдущего значения Q.

Конве́кция (от лат. convectiō — «перенесение») — вид теплопередачи, при котором внутренняя энергия передается струями и потоками. Существует т. н. естественная конвекция, которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При вынужденной (принудительной) конвекции перемещение вещества обусловлено действием каких-то внешних сил (насос, лопасти вентилятора и т. п.). Она применяется, когда естественная конвекция является недостаточно эффективной. Естественная- нагревание жидкости,воздуха в комнате

Вынужденная- перемешивание жидкости (мешалкой, ложкой, насосом и т.д.)

ЛУЧИСТЫЙ ТЕПЛООБМЕН (радиационный теплообмен) - процесс переноса энергии, обусловленный превращением части внутр. энергии вещества в энергию излучения (испусканием эл--магн. волн, или фотонов), переносом излучения в пространстве со скоростью света и его поглощением веществом (обратным превращением энергии эл--магн. волн во внутр. энергию). При этом перенос излучения в материальной среде может сопровождаться поглощением и рассеянием, а также собств. излучением среды. Однако для Л. т. наличие материальной среды между телами не является необходимым, что принципиально отличает Л. т. от др. видов теплообмена (теплопроводности, конвективного теплообмена). Передача теплоты излучением может происходить в разл. областях спектра (в зависимости от темп-ры).

Испускание лучистой энергии (тепловое излучение) абсолютно чёрного тела описывается Стефана - Больцмана законом излучения и Планка законом излучения.

Закон Стефана — Больцмана. Плотность потока собственного интегрального излучения абсолютно черного тела можно найти на осно­вании закона Планка как суммарную энергию излучения тела по всем длинам волн

.

(11.13)



В результате интегрирования найдём

,

(11.14)



где с0=5,67 Вт/(м2·К4) — коэффициент излучения абсолютно черного тела. Индекс «О» указывает на то, что рассматривается излучение абсолютно черного тела.

Всякая химическая реакция сопровождается выделением или поглощением тепла и соответственно называется экзотермической или эндотермической. Химические реакции, протекающие в процессах горения, преимущественно сильно экзотермические, некоторые реакции, как, например, реакции восстановления углекислоты, являются эндотермическими.

Количество тепла, выделяющегося при полном сгорании единицы массы данного топлива зависит от того, в паровом или жидком состоянии находится влага в продуктах сгорания. Если водяной пар сконденсируется и вода в продуктах сгорания будет находиться в жидком виде, то тепло парообразования освободится и тогда количество тепла, выделяющегося при сгорании единицы массы топлива, получается больше.

Количество тепла, выделяющегося при полном сгорании 1 кг твердого или жидкого топлива или 1 м3 газового топлива, при условии, что образующиеся водяные пары в продуктах сгорания конденсируются, называется высшей теплотой сгорания топлива.

В условиях температур и парциального давления Н20 на всем протяжении газового тракта парогенератора водяные пары, содержащиеся в продуктах сгорания, не конденсируются и вместе с ними отводятся в атмосферу. Следовательно, некоторая часть тепла, выделившегося при сгорании затрачивается на образование водяного пара и не может быть использована в парогенераторе. Поэтому теплота сгорания получается меньше освобождающейся при горении химической энергии топлива.

Количество тепла, которое выделяется при полном сгорании 1 кг твердого или жидкого или 1 м3 газового топлива, за вычетом тепла парообразования водяных паров, образующихся при горении, называется низшей теплотой сгорания.

Теплосиловая установка - Установка, предназначенная для преобразования тепла в механическую или электрическую энергию с использованием прямого термодинамического цикла.

Парогазовая установка — электрогенерирующая станция, служащая для производства электроэнергии. Отличается от паросиловых и газотурбинных установок повышенным КПД Парогазовая установка содержит два отдельных двигателя: паросиловой и газотурбинный. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как природный газ, так и продукты нефтяной промышленности (дизельное топливо). На одном валу с турбиной находится генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают лишь часть своей энергии и на выходе из неё, когда их давление уже близко к наружному и работа не может быть ими совершена, все ещё имеют высокую температуру. С выхода газовой турбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 °C позволяет получать перегретый пар при давлении около 100 атмосфер). Паровая турбина приводит в действие второй электрогенератор. Широко распространены парогазовые установки, у которых паровая и газовая турбины находятся на одном валу, в этом случае используется только один, чаще всего двухприводный генератор. Такая установка может работать как в комбинированном, так и в простом газовом цикле с остановленной паровой турбиной. Также часто пар с двух блоков ГТУ—котёл-утилизатор направляется в одну общую паросиловую установку.

Иногда парогазовые установки создают на базе существующих старых паросиловых установок. В этом случае уходящие газы из новой газовой турбины сбрасываются в существующий паровой котел, который соответствующим образом модернизируется. КПД таких установок, как правило, ниже, чем у новых парогазовых установок, спроектированных и построенных «с нуля».

^ 3.7 Теплоотдача при изменении агрегатного состояния среды Часто в процессе теплообмена нагреваемые или охлаждаемые материалы изменяют агрегатное состояние: испаряются, конденсируются, плавятся или кристаллизуются. Особенности таких процессов теплообмена заключаются в том, что тепло подводится к материалам или отводится от них при постоянной температуре и распространяется не в одной, а в двух фазах. Эти особенности теплоотдачи при изменении агрегатного состояния могут быть учтены путем введения в уравнения подобия конвективного переноса тепла дополнительного числа подобия, учитывающего теплоту изменения агрегатного состояния.

.

(3.45)

Величина ^ К является числом теплового подобия при изменении агрегатного состояния. Величина Δt представляет собой разность между температурой фазового превращения и температурой одной из фаз, а произведение cΔt является теплотой перегрева или переохлаждения рассматриваемой зоны относительно температуры фазового превращения. Число К является мерой отношения тепла, идущего на изменение агрегатного состояния вещества, к теплоте перегрева или переохлаждения одной из фаз относительно температуры фазового превращения. Число К характеризует относительное изменение количества протекающей жидкости вследствие изменения агрегатного состояния на границе раздела фаз. Из различных случаев теплоотдачи при изменении агрегатного состояния наибольшее значение для процессов химической технологии имеют теплоотдача при конденсации паров и теплоотдача при кипении жидкостей. 3.7.1 Теплоотдача при конденсации пара Конденсация пара применяется для обогрева различных технологических аппаратов. Широкое применение пара определяется следующими достоинствами: 1) постоянной температурой обогрева (tконд); 2) простотой, точностью регулирования температуры обогрева (изменением давления); 3) высокой интенсивностью теплообмена (αп= 10000…15000 Вт/(м2 град); 4) большим количеством тепла, выделяемого при конденсации 1 кг пара; 5) тем, что водяной пар дешевый, доступный, негорючий, нетоксичный, невзрывоопасный, транспортабельный. П а б Рисунок 3.6 – Пленочная (а) и капельная (б) конденсация пара ар конденсируется, т.е. переходит в жидкое состояние, на поверхности теплообмена, температура которой ниже температуры насыщения (tc<tn). Различают капельную конденсацию, когда образовавшаяся жидкость (конденсат) не смачивает поверхность и скатывается в виде отдельных капель, например, ртуть на стальной стенке, и пленочную конденсацию, когда конденсат смачивает поверхность и образует сплошную пленку (рисунок 3.6). Пленка жидкости, образующаяся на поверхности твердого тела, представляет собой основное термическое сопротивление распространению тепла от пара к твердому телу, однако пленочная конденсация встречается значительно чаще. Аналитическое решение для расчета локального коэффициента теплоотдачи при ламинарном течении пленки (Re<400) имеет вид:

,

(3.46)

где r – теплота парообразования; х – степень сухости пара. Из формулы (3.46) видно, что интенсивность теплоотдачи убывает по мере стекания конденсата из-за возрастания толщины его пленки. Среднее значение коэффициента теплоотдачи от поверхности высотой Н

.

(3.47)

Теплофизические параметры конденсата в формулы (3.46), (3.47) следует подставлять при температуре насыщения tn, а λc и µc при температуре стенки. Вдоль поверхности, наклоненной под углом φ к вертикали, конденсат стекает медленнее, пленка его получается толще, коэффициент теплоотдачи ниже. Формула для расчета среднего коэффициента теплоотдачи для горизонтальной трубы:

,

(3.48)

где – экспериментальная поправка. В промышленных теплообменниках конденсация обычно происходит на поверхности пучков труб. Коэффициент теплоотдачи от пучка труб ниже, чем от одиночной трубы, поскольку толщина пленки конденсата на нижних трубах увеличивается за счет стекания его с верхних труб. Формулы и графики для расчета поправок можно найти в справочниках. Присутствие в паре неконденсирующихся газов (например, воздуха) сильно снижает значение коэффициента теплоотдачи из-за того, что пар, подходя к поверхности, на которой идет конденсация, увлекает вместе с собой и неконденсирующиеся газы. При конденсации происходит как бы сортировка перемещенных молекул пара и газа – первые захватываются пленкой конденсата, а вторые остаются в газовой фазе, накапливаются и вынуждены двигаться назад от поверхности раздела фаз. Этот встречный поток затрудняет доступ новым молекулам пара к пленке конденсата, т.е. замедляет процесс конденсации. Влияние неконденсирующихся газов на теплоотдачу при конденсации уменьшается в случае, когда поверхность обдувается потоком пара со скоростью wn, поскольку при этом молекулы газа сносятся набегающим потоком и не успевают накапливаться около пленки конденсата. Коэффициент теплоотдачи увеличивается со скоростью движения пара, если поток его уменьшает толщину пленки конденсата или срывает ее. Если же поток пара препятствует движению пленки и при этом не срывает ее, то увеличение скорости пара приводит к уменьшению коэффициента теплоотдачи. При шероховатых поверхностях коэффициенты теплоотдачи меньше, чем при гладких, так как их сопротивление течению жидкой пленки больше, и поэтому меньше скорость стекания пленки и больше ее толщина. 3.7.2 Теплоотдача при кипении жидкости Этот вид теплоотдачи отличается высокой интенсивностью и встречается в химической технологии, например при проведении таких процессов, как выпаривание, перегонка жидкостей, в испарителях холодильных установок. Кипение – это испарение в объем жидкости с образованием паровоздушных пузырьков. В процессе кипения жидкость обычно сохраняет постоянную температуру, равную температуре насыщения tН. Поверхность, к которой подводится тепловой поток, перегрета сверх значения tН на величину Δt. При малых значениях Δt теплота переносится в основном путем естественной конвекции, коэффициенты теплоотдачи можно рассчитать по формуле:

,

(3.49)

где В и n – справочные коэффициенты.

1 – пузырьковый режим кипения; 2 – пленочный режим кипения Рисунок 3.7 – Зависимость коэффициента теплоотдачи α от перегрева стенки

При увеличении перегрева поверхности на ней образуется все большее число паровых пузырей, которые при отрыве и подъеме интенсивно перемешивают жидкость. Вначале это приводит к резкому увеличению коэффициента теплоотдачи (пузырьковый режим кипения), но затем парообразование у поверхности становится столь интенсивным, что жидкость отделяется от греющей поверхности почти сплошной прослойкой (пленкой) пара (рисунок 3.7).

Наступает пленочный режим кипения. Естественно, что пленка пара неустойчива и непрерывно разрушается, но тут же восстанавливается за счет новых порций образующегося пара. Пар, как и любое газообразное вещество, плохо проводит теплоту, и даже тонкая пленка, имея большое термическое сопротивление, ухудшает теплообмен – наступает кризис теплообмена при кипении. Скорость переноса теплоты при кипении зависит от многих разнообразных факторов (физических свойств жидкости, давления, температурного напора, свойств материала поверхности нагрева и многих других), учесть влияние которых на процесс и свести их в единую зависимость крайне сложно. Формула для определения коэффициента теплоотдачи при пузырьковом кипении жидкости на чистой поверхности, погруженной в большой объем:

,

(3.50)

где, кроме ранее принятых обозначений, q – плотность теплового потока, Вт/м2; р – давление над поверхностью нагрева, Па. Часто уравнением (3.50) невозможно пользоваться в практических расчетах ввиду отсутствия значений необходимых физических параметров жидкости и пара при температуре кипения. Поэтому для расчетов применяют найденные опытным путем зависимости для различных жидкостей вида

,

(3.51)

где А, n, m – константы, которые находят по справочникам; р – давление; q – плотность теплового потока. Приведем для примера лишь одну зависимость для пузырькового кипения воды в большом объеме при 0,1 ≤ р ≤ 3 МПа:

.

(3.52)

Единицы измерения всех величин в формуле (3.52) соответствуют системе СИ: α, [Вт/(м2∙К)]; q, [Вт/м2]; р, [Па].