Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Контрольные работы по КСЕ, Настругов Павел..docx
Скачиваний:
10
Добавлен:
14.02.2015
Размер:
28.5 Кб
Скачать

Контрольная работа № 73 Как с позиции термодинамики объяснить самопроизвольный процесс испарения воды?

Второй Закон Термодинамики, как и Первый Закон сохранения энергии установлен эмпирическим путем. Впервые его сформулировал Клаузиус теплота сама собой переходит лишь от тела с большей температурой к телу с меньшей температурой и не может самопроизвольно переходить в обратном направлении. Другая формулировка все самопроизвольные процессы в природе идут с увеличением энтропии. Энтропия мера хаотичности, неупорядоченности системы. Рассмотрим систему из двух контактирующих тел с разными температурами. Тепло пойдет от тела с большей температурой к телу с меньшей, до тех пор, пока температуры обоих тел не выровняются. При этом от одного тела к другому будет передано определенное количество тепла dQ. Но энтропия при этом у первого тела уменьшится на меньшую величину, чем она увеличится у второго тела, которое принимает теплоту, так как, поопределению, dSdQT температура в знаменателе!. То есть, в результате этого самопроизвольного процесса энтропия системы из двух тел станет больше суммы энтропий этих тел до начала процесса. Иначе говоря, самопроизвольный процесс передачи тепла от тела с высокой Т к телу с более низкой Т привел к тому, что энтропия системы из этих двух тел увеличилась! Заметим, что, рассматривая эту систему из двух тел, мы подразумевали, что внешнего теплопритока в нее или теплооттока из нее нет для простоты, чтобы не пудрить себе мозги то есть, считали ее изолированной или замкнутой. Отсюда еще одна формулировка Второго Закона Термодинамики При прохождении в изолированной системе самопроизвольных процессов энтропия системы возрастает. Или Энтропия изолированной системы стремится к максимуму так как самопроизвольные процессы передачи тепла всегда будут происходить, пока есть перепады температур. А что будет, если наша система из двух тел будет неизолирована незамкнута и, допустим, в нее поступает тепло? Ясно, что ее энтропия будет увеличиваться еще больше, так как при получении телом тепла энтропия его увеличивается dSdQT. Но для простоты формулировки этот момент обычно не упоминают и поэтому формулируют Второй Закон термодинамики именно для изолированных систем. Хотя, как мы видим, он действует точно также и для открытых

Первый закон термодинамики является обобщением закона сохранения и превращения энергии для термодинамической системы. Он формулируется следующим образом:

Изменение ΔU внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q, переданной системе, и работой A, совершенной системой над внешними телами.

 

ΔU = Q – A.

 

 

Соотношение, выражающее первый закон термодинамики, часто записывают в другой форме:

 

Q = ΔU + A.

 

 

Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами.

Первый закон термодинамики является обобщением опытных фактов. Согласно этому закону, энергия не может быть создана или уничтожена; она передается от одной системы к другой и превращается из одной формы в другую. Важным следствием первого закона термодинамики является утверждение о невозможности создания машины, способной совершать полезную работу без потребления энергии извне и без каких-либо изменений внутри самой машины. Такая гипотетическая машина получила название вечного двигателя (perpetuum mobile) первого рода. Многочисленные попытки создать такую машину неизменно заканчивались провалом. Любая машина может совершать положительную работу A над внешними телами только за счет получения некоторого количества теплоты Q от окружающих тел или уменьшения ΔU своей внутренней энергии.

Применим первый закон термодинамики к изопроцессам в газах.