Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Геом и волн оптика.doc
Скачиваний:
144
Добавлен:
14.02.2015
Размер:
560.64 Кб
Скачать

3. Дифракция света Дифракция Френеля. Дифракция на кристаллической решетке

3.1.1. На непрозрачную преграду с отверстием радиуса r = 1 мм падает плоская монохроматическая световая волна. Когда расстояние от преграды до установленного за ней экрана b1 = 0,575 м, в центре дифракционной картины наблюдается максимум интенсивности. При увеличении расстояния до значения b2 = 0,862 м максимум интенсивности сменяется минимумом. Определить длину волны света.

Ответ:  = r2(b2b1)/b1b2 = 580 нм.

3.1.2. На непрозрачном экране сделано круглое отверстие диаметром 4 мм. Экран освещается падающим нормально пучком параллельных лучей ( = 0,5 мкм). Точка наблюдения находится на расстоянии 1 м от него. Сколько зон Френеля укладывается на отверстии? Темное или светлое пятно будет наблюдаться в центре дифракционной картины, если в месте наблюдения поместить экран?

Ответ: 8 зон, темное пятно.

3.1.3. Дифракционная картина наблюдается на расстоянии L от точечного источника монохроматического света с  = 610–5 см. На расстоянии 0,5L от источника помещена круглая прозрачная преграда диаметром 1 см. Чему равно расстояние L, если преграда закрывает только центральную зону Френеля?

Ответ: 167 м.

3.1.4. Монохроматический свет ( = 0,5 мкм) падает нормально на круглое отверстие диаметром d = 1 см. На каком расстоянии от отверстия должна находиться точка наблюдения, чтобы в отверстии помещались а) одна зона Френеля, б) две зоны Френеля.

Ответ: 1) 50 м; 2) 25 м.

3.1.5. Точечный источник монохроматического света расположен перед зонной пластинкой на расстоянии a = 1,5 м от нее. Изображение источника образуется на расстоянии d = 1,0 м от пластинки. Найти фокусное расстояние зонной пластинки.

Ответ: f = ab / (a + b) = 0,6 м. Это значение соответствует главному фокусу, помимо которого существуют и другие.

3.1.6. Найти радиус третьей и пятой зон Френеля, если расстояние от источника света до волновой поверхности a = 1 м, расстояние от волновой поверхности до точки наблюдения b = 1 м. Длина света  = 500 нм.

Ответ: r3 = 0,86 мм; r5 = 1,12 мм.

3.1.7. Найти радиус второй и четвертой зон Френеля для плоской волны, если расстояние от волновой поверхности до точки наблюдения b = 1 м. Длина света  = 500 нм.

Ответ: r2 = 1 мм, r4 = 1,41 мм.

3.1.8. Свет от монохроматического источника ( = 600 нм) падает нормально на диафрагму с диаметром отверстия d = 6 мм. За диафрагмой на расстоянии l = 3 м от нее находится экран. Какое число зон Френеля укладывается в отверстии диафрагмы? Каким будет центр дифракционной картины на экране: темным или светлым?

Ответ: k = 5; центр дифракционной картины будет светлым.

3.1.9. Дифракционная картина наблюдается на расстоянии l = 4 м от точечного источника монохроматического света ( = 500 нм). На расстоянии a = 0,5l от источника помещена диафрагма с круглым отверстием. При каком радиусе R отверстия центр дифракционных колец, наблюдаемых на экране, будет наиболее темным?

Ответ: R = 1 мм.

3.1.10. На диафрагму с диаметром D = 1,96 мм падает нормально параллельный пучок монохроматического света ( = 600 нм). При каком наибольшем расстоянии l между диафрагмой и экраном в центре дифракционной картины будет наблюдаться темное пятно?

Ответ: l = 0,8 м.

3.1.11. Вычислить радиус пятой зоны Френеля для плоского волнового фронта ( = 0,5 мкм), если построение делается для точки наблюдения, находящейся на расстоянии b = 1 м от фронта волны.

Ответ: r5 = 1,58 мм.

3.1.12. Радиус четвертой зоны Френеля для плоского волнового фронта равен 3 мм. Определить радиус шестой зоны Френеля.

Ответ: r6 = 3,69 мм.

3.1.13. На диафрагму с круглым отверстием диаметром d = 4 мм падает нормально параллельный пучок лучей монохроматического света ( = 0,5 мкм). Точка наблюдения находится на расстоянии 1 м от него. Сколько зон Френеля укладывается на отверстии? Темное или светлое пятно будет наблюдаться в центре дифракционной картины, если в месте наблюдения поместить экран?

Ответ: 8 зон, темное пятно.

3.1.14. Плоская световая волна ( = 0,7 мкм) падает нормально на диафрагму с круглым отверстием радиусом r = 1,4 мм. Определить расстояния b1, b2, b3 от диафрагмы до трех наиболее удаленных от нее точек, в которых наблюдаются минимумы интенсивности.

Ответ: b1 = 1,4 м; b2 = 0,4 м, b3 = 0,47 м.

3.1.15. Точечный источник света ( = 0,5 мкм) расположен на расстоянии a = 1 м от плоской диафрагмы с круглым отверстием радиусом r = 0,5 мм. Определить расстояние от экрана до диафрагмы, при котором отверстие открывало бы три зоны Френеля.

Ответ: b = ar2 / (kar2) = 0,2 м.

3.1.16. Точечный источник света с  = 500 нм помещен на расстоянии a = 0,500 м перед непрозрачной преградой с отверстием радиуса r = 0,500 мм. Определить расстояние b от преграды до точки, для которой число открываемых отверстием зон Френеля равно: а) 1; б) 5; в) 10.

Ответ: b = 1/2 (m – 1); a) b = , б) b = 125 мм; в) b = 56 мм.

3.1.17. Точечный источник света с  = 550 нм помещен на расстоянии a = 1 м перед непрозрачной преградой с отверстием радиуса r = 2 мм. Определить минимальное число открытых зон Френеля, которое может наблюдаться при этих условиях.

Ответ: mmin равно наименьшему целому числу,

превышающему r2 / a = 8.

3.1.18. Точечный источник света с  = 550 нм помещен на расстоянии a = 1 м перед непрозрачной преградой с отверстием радиуса r = 2 мм. Определить, при каком значении расстояний b от преграды до точки наблюдения получается минимальное возможное число открытых зон?

Ответ: b = ar2 / (amr2) = 10 м.

3.1.19. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения  = 147 пм. Определить расстояние d между атомными плоскостями кристалла, если дифракционный максимум второго порядка наблюдается, когда излучение падает под углом  = 3130 к поверхности кристалла.

Ответ: d = 0,28 нм.

3.1.20. Какова длина волны монохроматического рентгеновского излучения, падающего на кристалл кальцита, если дифракционный максимум первого порядка наблюдается, когда угол  между направлением падающего излучения и гранью кристалла равен 3? Расстояние между атомными плоскостями принять равным nd = 0,3 нм.

Ответ:  = 31 пм.

3.1.21. Параллельный пучок рентгеновского излучения падает на грань кристалла. Под углом 65 к плоскости грани наблюдается максимум первого порядка. Расстояние между атомными плоскостями кристалла d = 280 пм. Определить длину волны рентгеновского излучения.

Ответ:  = 506 пм.

3.1.22. Исходя из определения зон Френеля, найти число зон Френеля, которые открывает отверстие радиуса r для точки, находящейся на расстоянии b от центра отверстия, в случае, если волна, падающая на отверстие, плоская.

Ответ: m = r2 / b.

3.1.23. Зная формулу радиуса -й зоны Френеля для сферической волны, вывести соответствующую формулу для плоской волны.

Ответ: .

3.1.24. Параллельный пучок рентгеновского излучения падает на грань кристалла. Под каким углом к плоскости грани наблюдается максимум первого порядка. Расстояние между атомными плоскостями кристалла d = 280 пм. Длин волны рентгеновского излучения 506 пм.

Ответ:  = 65 .

3.1.25. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения  = 147 пм. Расстояние d = 0,28 нм между атомными плоскостями кристалла. Определить, под каким углом к поверхности кристалла наблюдается дифракционный максимум второго порядка.

Ответ:  = 3130.