Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА.doc
Скачиваний:
52
Добавлен:
13.02.2015
Размер:
82.43 Кб
Скачать

4.3.Неформальное рассмотрение процесса планирования эксперимента

Перед этим обсудим некоторые общие свойства объектов планирования эксперимента. Можно рассматривать воспроизводимые и невоспроизводимые эксперименты. Для первых из них возможно повторение эксперимента в идентичных условиях. К ним относятся, разумеется, компьютерные эксперименты и лабораторные физические или химические эксперименты. В технике чаще встречаются невоспроизводимые эксперименты. Подобный эксперимент протекает во времени необратимо без возможности его измене-ния или повторения. Обычно изменения, вносимые в процессе эксперимента, малы и их условно можно рассматривать как воспроизводимые. В таких экспериментах можно выбрать последовательность условий.

Рассмотрим два предельных случая Можно выбирать верхнее или нижнее значение независимой случайной величины и изменять его скачкообразно вплоть до достижения другого предельного значения. Но можно выбранные значения чередовать чисто случайным образом, выбирая то большее, то меньшее значение. Первый из этих планов называется последовательным, а второй – случайным (рандомизированным). По смыслу ясно, что для воспроизводимых экспериментов целесообразно применять план первого типа, а для невоспроизводимых - план второго типа.

Хорошим примером необходимости использования последовательного плана является, например, исследование коэффициентов сопротивления в зависимости от числа Рейнольдса. При этом появляется возможность фикси-ровать изменения, связанные с физикой процесса. Как удачно выражается Шенк в «Теории инженерного эксперимента», в этих случаях «сама последовательность условий является определенным параметром».

Но все же для большинства инженерных экспериментов более подходящим является частично или полностью рандомизированный план.

Рассмотрим доводы в пользу такого подхода.

- При натурном, а не лабораторном эксперименте внешние эффекты могут неконтролируемым образом менять условия опыта. Таким образом, при исследовании функции R (Х) как R, так и Х могут меняться за счет влияния фактора y. Эти изменения ошибочно могут восприниматься как

влияние Х на R.

- В процессе эксперимента может изменяться работоспособность оператора или ухудшением точности показаний прибора.

- Механические воздействия могут вызвать изменение замеренных значений переменной Х. Допустим, что в измерительном приборе или регуляторе имеет место «заедание». Тогда знак ошибки будет меняться в зависимости от направления изменения замеряемой величины и при реализации последовательного плана мы получим систематическую ошибку. Для рандомизации можно использовать, например, генератор случайных чисел.

Однофакторный эксперимент

В данном случае имеется одна регулируемая переменная. Однако, кро-ме того на результат влияют нерегулируемые внешние переменные. Их влия-ние и должно быть скомпенсировано путем рандомизации условий экспери-мента. Рассмотрим следующий пример (Шенк):

Требуется проверить работу нового резца в производственных условиях и определить скорость обработки обеспечивающую максимальный .выход продукции при заданном проценте брака. У нас один фактор –скорость

обработки. Внешние переменные – станки, рабочие, дни недели. Выбираются случайным образом 4 станочника (A, B, C, D) и 4 различные скорости обработки (1, 2, 3, 4). Простейший вариант плана

рабочий

день недели

понедельник.

вторник

среда

четверг

А

B

C

D

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

Он явно плохой, так как не учитывает последовательности изменении условий эксперимента, связанных с психологией, здоровьем, днями недели и.т.д. Рандомизация: выбор скорости по дням производится по жребию.

рабочий

день недели

понедельник.

вторник

среда

четверг

А

B

C

D

4

2

3

1

2

3

2

3

1

1

1

4

3

4

4

2

Этот план более совершенный, его еще можно улучшить. Для этого проведем полную рандомизацию таким образом, чтобы кроме того в данный день каждая скорость обработки встречалась только один раз.

рабочий

день недели

понедельник.

вторник

среда

четверг

А

B

C

D

1

3

2

4

2

4

1

3

3

1

4

2

4

2

3

1

Получившаяся матрица называется латинский квадрат и представляет собой частный случай в семействе планов факторных экспериментов. Он ха-рактерен тем, что каждый символ встречается в каждом столбце и в каждой строке только один раз.

Наконец, можно внести еще одно усовершенствование плана экспери-мента – устранить влияние того, что за каждым рабочим закреплен свой станок. Обозначим станки буквами W, X, Y, Z, таким образом, чтобы каждый рабочий обслуживал каждый станок только дин день. Тогда получим следующий план

рабочий

день недели

понедельник.

вторник

среда

четверг

А

B

C

D

1W

3X

2Y

4Z

2X

4W

1Z

3Y

3Z

1Y

4X

2W

4Y

2Z

3W

1X

Это так называемый греко-латинский квадрат, который позволяет устранить влияние трех факторов. Он является сбалансированным, посколь-ку количество уровней фактора (скорости) и количества значений случайных переменных равны между собой. При большем количестве случайных пере-менных задача существенно усложняется.

Если , например, мы хотим рассмотреть 6 скоростей, то для аналогич-ной сбалансированной схемы (квадрата) нам нужно иметь по шесть станков, рабочих и дней. Но можно сократить объем опытов, ограничив число рабочих тремя. Тогда можно ограничиться двумя Греко-латинскими квадратами 3 х 3

рабочий

день

день

понед.

вторник

среда

четверг

пятн.

суббота

А

B

C

1X

3Y

5Z

3Z

5X

1Y

5Y

1Z

3X

2X

4Y

6Z

4Z

6X

2Y

6Y

2Z

4X

Этот план требует вдвое меньше, чем сбалансированный, но может оказаться вполне удовлетворительным