Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika_kollokvium.doc
Скачиваний:
62
Добавлен:
12.02.2015
Размер:
850.43 Кб
Скачать

[Править] Упрощённое объяснение

Туннельный эффект можно объяснить соотношением неопределённостей.[1]Записанное в виде:

,

оно показывает, что при ограничении квантовой частицы по координате, то есть увеличении её определённости по x, её импульсpстановится менее определённым. Случайным образом неопределённость импульсаможет добавить частице энергии для преодоления барьера. Таким образом, с некоторой вероятностью квантовая частица может проникнуть через барьер, а средняя энергия частицы останется неизменной.

[Править] Макроскопические проявления туннельного эффекта

Туннельный диодиджампер.

Туннельный эффект имеет ряд проявлений в макроскопических системах:

  • Туннелирование носителей зарядов через потенциальный барьер p-n перехода, получившее практическое применение втуннельном диоде.

  • Туннелирование носителей зарядов через тонкую оксидную плёнку, имеющую диэлектрические свойства, покрывающую рядметаллов(в частности,алюминия) и обеспечивающеепроводимостьточек механического соединенияпроводников(скрутки проводов, зажимы,джамперы). Применительно к сверхпроводникам это явление получило названиеэффект Джозефсона.

  1. Планетарная модель атома. Опыт Резерфорда. Атомные спектры. Постулаты Бора. Объяснение спектра водорода.

  1. Состав ядра атома. Взаимодействие нуклонов в ядре. Ядерные силы. Современные представления о строении атома.

А́томное ядро́— центральная частьатома, в которой сосредоточена основная егомасса(более 99,9 %). Ядро заряжено положительно, заряд ядра определяетхимический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколькофемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.     В 1932 г. английский физик Джеймс Чедвик открыл частицы с нулевым электрическим зарядом и единичной массой. Эти частицы назвали нейтронами. Обозначается нейтрон п. После открытия нейтрона физики Д. Д. Иваненко и В. Гейзенберг в 1932 г. выдвинули протонно-нейтронную модель атомного ядра. Согласно этой модели, ядро атома любого вещества состоит из протонов и нейтронов. (Общее название протонов и нейтронов — нуклоны.) Число протонов равно заряду ядра и совпадает с номером элемента в таблице Менделеева. Сумма числа протонов и нейтронов равна массовому числу. Например, ядро атома кислородасостоит из 8 протонов и 16 - 8 = 8 нейтронов. Ядро атомасостоит из 92 протонов и 235 - 92 = 143 нейтронов.

Атомное ядро состоит из нуклонов— положительно заряженныхпротонови нейтральныхнейтронов, которые связаны между собой при помощисильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным[сн 1]и связанным с ниммагнитным моментом.

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом.

    Если сравнить массы ядер с массами нуклонов, то окажется, что масса ядра тяжелых элементов больше суммы масс протонов и нейтронов в ядре, а для легких элементов масса ядра меньше суммы масс протонов и нейтронов в ядре. Следовательно, существует разность масс между массой ядра и суммой масс протонов и нейтронов, называемая дефектом массы. М = Мn — (Мp + Мn).           Так как между массой и энергией существует связь , то при делении тяжелых ядер и при синтезе легких ядер должна выделяться энергия, существующая из-за дефекта масс, и эта энергия называется энергией связи атомного ядра.

Ядерные силы силы— удерживающие нуклоны (протоныинейтроны) в ядре. Они действуют только на расстояниях не более 10-13см и достигают величины, в 100-1000 раз превышающей силу взаимодействия электрических зарядов.

Ядерные силы не зависят от заряда нуклонов. Они обусловлены сильным взаимодействием.

Сведения о ядерный силах были получены из данных о рассеянии нуклонов на нуклонах, а также из исследований свойств атомных ядер(связанных состояний нуклонов). Само существование атомных ядер заставляет предположить, что в ядерных силах имеется существенное притяжение, которое и обеспечиваетэнергию связиЭнергия связи — разность между энергией связанной системы частиц и суммарной энергией этих частиц в свободном состоянии. Для устойчивых систем энергия связи отрицательна и тем больше по абсолютной величине, чем прочнее система. Энергия связи с обратным знаком равна минимальной работе, которую нужно затратить, чтобы разделить систему на составляющие ее частицы.нуклонов в ядрах порядка нескольких МэВ нануклон. Кроме того, с увеличением числа нуклоновAв ядреэнергия связина нуклон остается примерно постоянной, а объем ядра растет пропорциональноA. Про системы с такими свойствами говорят, что в них имеется насыщение сил, и потому ядерные силы называют насыщающими. Они приводят к возможности существования ядерной материи (Нейтронные звездыНейтронные звезды — компактные астрофизические объекты с массами около 1,4 массы Солнца и радиусами около 10 км, образующиеся из массивных звезд после вспышки сверхновой. Нейтронные звезды состоят в основном из нейтронов. Нейтронные звезды являются одними из самых интересных астрофизических объектов с физической точки зрения. Для них характерны такие явления и свойства как: сверхтекучесть, сверхпроводимость, сверхсильные магнитные поля, излучение нейтрино, эффекты специальной и общей теории относительности. В недрах нейтронных звезд могут существовать экзотические формы материи (конденсаты различных элементарных частиц, кварковое вещество).), плотность энергии которой не зависит от полного числа нуклонов и составляет примерно 16 МэВ на нуклон (если пренебречь электромагнитными (кулоновским) и гравитационными взаимодействиями). В общем случае можно представить себе, что ядерные силы – это притяжение только между нуклонами — ближайшими соседями, поэтому и энергия связи ядра пропорциональна числунуклоновв ядре.

(Если что тут информация побольше про ядерные силы.. http://atombit.org/yadernye-sily/)

Современные представления о строении атома.

одтверждённая экспериментально в 1927 г. двойственная природа электрона, обладающего свойствами не только частицы, но и волны, побудила учёных к созданию новой теории строения атома, учитывающей оба этих свойства. Современная теория строения атома опирается на квантовую механику. Двойственность свойств электрона проявляется в том, что он, с одной стороны, обладает свойствами частицы (имеет определённую массу покоя), а с другой — его движение напоминает волну и может быть описано определённой амплитудой, длиной волны, частотой кол***ий и др. Поэтому нельзя говорить о какой-либо определённой траектории движения электрона — можно лишь судить о той или иной степени вероятности его нахождения в данной точке пространства. Cледовательно, под электронной орбитой следует понимать не определённую линию перемещения электрона, а некоторую часть пространства вокруг ядра, в пределах которого вероятность пребывания электрона наибольшая. Иными словами, электронная орбита не характеризует последовательность перемещения электрона от точки к точке, а определяется вероятностью нахождения электрона на определённом расстоянии от ядра. В связи с этим электрон представляют не в виде материальной точки, а как бы "размазанным" по всему объёму атома в виде так называемого электронного облака, имеющего области сгущения и разрежения электрического заряда. Представление об электроне как о некотором облаке электрического заряда удобно; оно довольно точно передаёт особенности поведения электрона. Однако следует иметь в виду, что электронное облако не имеет резко очерченных границ, и даже на большом расстоянии от ядра существует вероятность пребывания электрона. Для характеристики формы электронного облака понятие орбиталь вместо понятия орбита было введено именно для того, чтобы не смешивать движение электрона с движением тела в классической физике. Однако при упрощённом рассмотрении строения атома иногда сохраняют термин орбита, помня тем не менее об особом характере движения электрона в атоме. По современным представлениям состояние элетрона в атоме описывается четырьмя квантовыми числами. Главное квантовое число n характеризует величину энергии электрона и может принимать только положительные целочисленные значения: 1, 2, 3 и т. д. С увеличением главного квантового числа энергия электрона возрастает. Состояние электрона, отвечающее определённому значению главного квантового числа, называют энергетическим уровнем электрона в атоме. Помимо энергии электрона главное квантовое число определяет размеры электронного облака: чем выше значение главного квантового числа, тем больше электронное облако. Электроны, характеризующиеся одним и тем же квантовым числом, имеют электронные облака приблизительно одинаковых размеров. Поэтому говорят о существовании в атоме электронных слоёв. Электронные слои обозначают большими буквами латинского алфавита K, L, M, N, O, причём K-слой является первым от ядра атома, ему соответствует главное квантовое число n = 1, L-слой — вторым, M-слой — третьим и т. д. Электроны, образующие данный слой, могут обладать несколько отличающейся друг от друга энергией и иметь орбитали различных форм. Из квантовомеханической теории следует, что с увеличением главного квантового числа n изменяются число и характер электронных орбиталей в пределах данного электронного слоя. Количество орбиталей для каждого значения n равно квадрату главного квантового числа (n2). Второе квантовое число l, описывающее форму электронного облака, называется орбитальным квантовым числом. При данном главном вантовом числе n орбитальное квантовое число l может принимать любые целочисленные значения от 0 до n–1. Соответствующие орбитали обозначаются строчными буквами латинского алфавита: s (l = 0), p (l = 1), d (l = 2), f (l = 3). Орбитальное квантовое число отображает энергию электрона на подуровне. Электроны с различными орбитальными квантовыми числами несколько отличаются друг от друга: их энергия тем выше, чем больше число l. Число возможных подуровней в каждом энергетическом уровне совпадает с порядковым номером электронного слоя, но фактически ни один энергетический уровень не содержит больше четырёх подуровней. Это справедливо для стационарного состояния атомов всех элементов. Так, первому энергетическому уровню соответствует s-подуровень; второму уровню — два подуровня: s и p; третьему уровню — три подуровня: s, p и d; четвёртому и следующим уровням —четыре подуровня: s, p, d и f. Ориентацию орбиталей в пространстве определяет третье квантовое число, называемое магнитным квантовым числом и обозначаемое m. При данном орбитальном квантовом числе l магнитное квантовое число m может принимать любые целочисленные значения от –l до +l, в том числе нулевое значение. Оно определяет число орбиталей в одном и том же электронном слое: одна s-орбиталь (m = 0), три p-орбитали (m равно –1, 0, +1), пять d-орбиталей (m равно –3, –2, –1, 0, +1, +2, +3). Орбитали с различными магнитными квантовыми числами, но с одинаковым главным и орбитальным квантовыми числами характеризуются одной и той же энергией. Магнитное квантовое число есть вектор, следовательно, ему соответствует не только определённое числовое значение, но и определённое направление, что выражается в знаках "+" и "–". Четвёртое квантовое число, называемое спином и обозначаемое ms, раньше связывали с вращением электрона вокруг своей оси, но теперь ему не придают какого-либо наглядного образа и считают чисто квантовомеханической величиной. Спин электрона может иметь два значения: +1/2 и –1/2.

  1. Элементарные частицы. Основные виды частиц, методы их регистрации. Взаимодействие частиц и излучения с веществом. Ядерные реакции.

Элемента́рная части́ца— собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части.

Следует иметь в виду, что некоторые элементарные частицы (электрон,фотон,кваркии т. д.) на данный момент считаются бесструктурными и рассматриваются как первичныефундаментальные частицы. Другие элементарные частицы (так называемыесоставные частицыпротон,нейтрони т. д.) имеют сложную внутреннюю структуру, но, тем не менее, по современным представлениям, разделить их на части невозможно (см.Конфайнмент).

Строение и поведение элементарных частиц изучается физикой элементарных частиц.

Все элементарные частицы делятся на два класса:

  • бозоны — частицы с целым спином (например, фотон, глюон, мезоны).

  • фермионы — частицы с полуцелым спином (например, электрон, протон, нейтрон, нейтрино);

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]