Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Привод / ЭАппараты(работа)Выполнена-оксана.doc
Скачиваний:
603
Добавлен:
11.02.2015
Размер:
21.88 Mб
Скачать

Расчет фильтра.

Коэффициент пульсаций на входе фильтра (отношение амплитуды напряжения к среднему значению)

(28)

где т — пульсность схемы выпрямления (т = 6 для трехфазной мостовой схемы, т = 2 для однофазной мостовой схемы).

Параметр сглаживания LС-фильтра

(29)

где S = q1вх/ q1вых— коэффициент сглаживания по первой гармонике; fs — частота сети, Гц.

Параметр сглаживания С-фильтра

(30)

где Ls — индуктивность сети, Гн, приведенная к звену постоянного тока.

Значения коэффициента сглаживания 5 лежат в диапазоне от 3 до 12.

Индуктивность дросселя LC-фильтра для обеспечения коэффициента мощности на входе выпрямителя Kм =0,95 определяется по формуле

L0≥3 L0min (31)

(32)

где Id — номинальный средний ток звена постоянного тока.

В трехфазных инверторах с ШИМ по синусоидальному закону реактивная энергия полностью скомпенсирована по выходной частоте. Это означает, что Км зависит преимущественно (без учета запаздывания открывания полупроводниковых приборов) от индуктивности фильтра L0 и индуктивности питающей сети Ls, зависимость Км =f(L0/L0min) для трехфазного мостового выпрямителя приведена на рис. 20.

Значение минимальной индуктивности L0min фильтра определяется из (31).

Из рис. 20 видно, что для обеспечения Км = 0,95 необходимо иметь индуктивность дросселя фильтра L0 =3 L0min.

Емкость конденсаторов, необходимая для протекания реактивного тока нагрузки инвертора, находится из выражения:

(33)

где Ism1 — амплитудное значение тока в фазе двигателя, А; φ1— угол сдвига между первой гармоникой фазного напряжения и фазного тока; q1 — коэффициент пульсаций; fsw — частота ШИМ, Гц.

После выбора типа фильтра (LC или С) рассчитывается емкость конденсаторов C01 или С02 и сравнивается с емкостью С03, рассчитанной по (33). Для практической реализации фильтра используют конденсаторы с наибольшим значением емкости С0i; (i=1, 2 или 3).

Рис. 20. Зависимость Км =f(L0/L0min) для трехфазного выпрямителя

Амплитуда тока, протекающего через конденсаторы фильтра на частоте пульсаций выпрямленного тока (по первой гармонике)

(34)

Далее в зависимости от значения С0i,- и амплитуды тока формируется батарея конденсаторов с емкостью С0i и более, допустимым по амплитуде током IC0m и более и напряжением 800 В и более для трехфазной мостовой схемы или 400 В для однофазной мостовой схемы выпрямителя. Запас по току принимается в зависимости от требуемого ресурса работы инвертора.

Некоторые фирмы, производящие электролитические конденсаторы, дают более подробную информацию по выбору конденсаторов по току. Например, для конденсаторов, изготовляемых по стандарту IEC 384-4, имеем допустимое амплитудное значение тока (при Т = 85°С и f= 100 Гц) I = 3,1 А при следующих номинальных параметрах: U= 450 В, С = 470 мкФ. В каталоге фирмы «Siemens Matsushita Components» для электролитических конденсаторов приведена зависимость поправочного коэффициента от частоты для приведения тока к частоте f = 100 Гц (табл. 5).

Например, для ПЧ на мощность двигателя 55 кВт С0i= 5540 мкФ (32 конденсатора с номинальными параметрами: 680 мкФ, 400 В, включенных парами последовательно для повышения рабочего напряжения — всего 16 пар, которые включены параллельно для получения заданной емкости), а на мощность 2,2кВт С0i, = 235мкФ (2 конденсатора с параметрами 470мкФ, 400В, включенных последовательно). Применяются также электролитические конденсаторы на большие емкости и большие токи, например конденсаторы Rifa (4700 мкФ, 450 В) допускают амплитудное значение переменной составляющей тока: на 100 Гц — 14,8 А и на 10 кГц — 34,9 А и классифицируются как приборы Long Life (10 лет службы). Однако по цене и удобству распределенного размещения электролитических конденсаторов в ПЧ в целях уменьшения индуктивности монтажа, по ремонтопригодности и доступности приобретения «батарея» из «мелких» конденсаторов может оказаться более предпочтительной, чем из «крупных» конденсаторов.

Таблица 5.

Зависимость поправочного коэффициента от частоты для приведения тока к частоте fi = 100 Гц.

Частота, Гц

90

100

400

800

1000

2000

Поправочный коэффициент

0,8

1,0

1,2

1,3

1,35

1,4

Соседние файлы в папке Привод