Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Введение в мехатронику.doc
Скачиваний:
307
Добавлен:
11.02.2015
Размер:
33.06 Mб
Скачать

1.3.2.2. Преобразователи частоты со звеном постоянного тока

Структурная схема преобразователя частоты со звеном постоянного тока приведена на рис. 1.28. Переменное напряжение ивх с частотой fвх подается на вход выпрямителя. Для сглаживания пульсаций выходного напряжения выпрямителя (см. п. 1.3.1), между ним и инвертором устанавливается фильтр. Инвертор преобразует постоянное напряжение в переменное ивых заданной частоты fвых. Таким образом, в преобразователях этого типа осуществляется двухступенчатое преобразование электрической энергии и частота выходного напряжения не зависит от частоты питающей сети и может быть как меньше ее, так и больше.

Рис. 1.28. Структурная схема преобразователя частоты

с промежуточным звеном постоянного тока

Выпрямитель, как правило, выполняют по трехфазной мостовой схеме (рис. 1.23). В зависимости от режимов работы исполнительного двигателя он может быть реализован как на управляемых вентилях – тиристорах, так и на неуправляемых – диодах.

В качестве фильтра применяют конденсаторы с большой емкостью. При этом конденсатор подключают на шину постоянного тока – на выходе выпрямителя (входе инвертора). Принцип работы такого фильтра пояснен рис. 1.29. В течение времени t2 - t1 конденсатор заряжается (накапливает электрическое поле) практически до амплитудного значения переменного напряжения, а в течение времени t3 - t2 – разряжается на цепь инвертор-сопротивление нагрузки. В момент времени t3, когда напряжение на входе выпрямителя становится больше напряжения на конденсаторе, он снова начинает заряжаться. Пульсации напряжения на шине постоянного тока при этом становятся значительно меньшими.

В общем случае автономный инвертор может быть выполнен в двух вариантах – как инвертор напряжения и как инвертор тока. Однако в преобразователях, работающих на двигательную нагрузку, где необходим широкий диапазон регулирования частоты выходного напряжения, автономный инвертор выполняется в виде инвертора напряжения.

На рис. 1.30, а приведена схема преобразователя частоты с инвертором на IGBT транзисторах, включенных в трехфазную мостовую схему. Для возврата реактивной мощности активно-индуктивной нагрузки (каковой и является электродвигатель) все транзисторы в обратном направлении зашунтированы диодами.

Принцип широтно-импульсной модуляции инвертора напряжения удобнее рассмотреть на примере однофазной мостовой схемы (рис. 1.30, б). Когда открыты транзисторы и(момент времениt = t1) напряжение на нагрузке имеет полярность, указанную на рис. 1.30, б (без скобок), а ток в нагрузке нарастает по экспоненциальному закону (см. рис. 1.30, в). В момент времени на транзисторыипоступают запирающие сигналы и они закрываются. В это же время подаются отпирающие сигналы на транзисторыи. Однако, ток в индуктивности не может измениться скачком и поэтому он будет продолжать протекать в том же направлении, но уже не через транзисторы,или,, а через диодыи. Условия для протекания тока через диоды определяются противо-эдс индуктивной нагрузки, которая выше напряжения источника питания. При этом напряжение на нагрузке изменит полярность (на рис. 1.30,б указана в скобках). Закон протекания тока тот же – экспоненциальный, но сам ток при этом уменьшается.

При спадании тока до нуля диоды изакроются и дальнейшее протекание тока будет проходить через транзисторыи, на базах которых с момента времениприсутствует отпирающий сигнал. Далее процессы периодически повторяются. Таким образом, в нагрузке формируется напряжение прямоугольной и ток экспоненциальной формы.

Отсутствие обратно включенных диодов приводило бы к появлению перенапряжения на транзисторах. Во время же протекания тока через эти диоды происходит возврат энергии из нагрузки обратно в звено постоянного тока. На рис. 1.30,в также показаны диаграммы тока, потребляемого от источника постоянного напряжения id. На этой диаграмме положительные площади соответствуют потреблению энергии от источника, а отрицательные – приему энергии источником.

У современных преобразователей частота модуляции (переключения ключей) составляет2…20 кГц., что позволяет обеспечивать не только высокую динамику работы электроприводов мехатронных модулей, но и формировать практически синусоидальные токи и напряжения на обмотках статора электродвигателя. На рис. 1.30, г проиллюстрирован процесс формирования на выходе инвертора синусоидального напряжения с частотой на порядок меньшей частоты модуляции. За период выходного сигнала на нагрузку подается десять прямоугольных импульсов напряжения. Очевидно, что среднее значение выходного напряжения за период модуляции при этом зависит от соотношения положительной и отрицательной частей этого импульса – чем дольше подается положительный импульс, тем выше среднее за период модуляции напряжение на нагрузке. При этом ток в нагрузке будет формироваться в межкоммутационных интервалах из участков экспонент. Если частота импульсов будет еще выше, чем это показано на рис. 1.30, г, например на два или три порядка, то кривая тока будет иметь практически синусоидальную форму со спектром на 99 % состоящим из основной гармоники.

При работе трехфазного инвертора в каждом интервале коммутации две обмотки соединяются параллельно и подключаются последовательно с третьей обмоткой. Процессы, происходящие в такой схеме, аналогичны рассмотренным выше, а на выходе инвертора формируется трехфазная система напряжений.