Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ТМ

.docx
Скачиваний:
7
Добавлен:
11.02.2015
Размер:
43.06 Кб
Скачать

1) Технология машиностроения — область технической науки, занимающаяся изучением связей и установлением закономерностей в процессе изготовления машин. Она призвана разработать теорию технологического обеспечения и повышения качества изделий машиностроения с наименьшей себестоимостью их выпуска. Объектом технологии машиностроения является технологический процесс, а предметом — установление и исследование внешних и внутренних связей, закономерностей технологического процесса. Технологии машиностроения – комплекс технических наук, технологий, используемых в машиностроении. Машиностроение традиционно определяется как отрасль тяжёлой промышленности, изготовляющей машины и оборудование для промышленности, обороны, а также для широкого потребления. Главная задача машиностроения – обеспечить все отрасли промышленности высокоэффективными машинами и оборудованием. Машиностроение является основой индустриализации. Машиностроение часто понимают как составную часть более широкой производственной группы - машиностроение и металлообработка, - в которую, кроме машиностроения, входит обработка металлов, производство металлических изделий, металлоконструкций, ремонт машин и оборудования. Первый этап, охватывающий период XIX —начало XX в., был ознаменован первыми работами по обобщению накопленного производственного опыта в области металлообработки. Второй этап, совпадающий с завершением периода восстановления и началом реконструкции промышленности России (до 1930 г.), характеризуется накоплением отечественного и зарубежного опыта производства машин. Третий этап На этом этапе русскими учеными и инженерами были разработаны основополагающие принципы построения технологических процессов и заложены основные теоретические положения технологии машиностроения: типизация технологических процессов, теория базирования заготовок при обработке, измерении и сборке, методы расчета припусков на обработку, жесткость технологической системы,расчетно-аналитический метод определения первичных погрешностей обработки заготовок,методы исследования точности обработки на станках с применением математической статистики и теории вероятностей. Четвертый этап, охватывающий годы Великой Отечественной войны и послевоенного развития (1941 — 1970), — период наиболее интенсивного развития технологии машиностроения, разработки новых технологических идей и формирования научных основ технологической науки.

2) Различают три вида производства: единичное, серийное и массовое. Следует отметить, что на одном и том же предприятии и даже в одном и том .цехе могут быть различные виды производства. Так, например, на предприятиях тяжелого машиностроения, выпускающих изделия единичного производства, мелкие детали, требующиеся в большом количестве, могут изготовляться по принципу серийного или даже массового производства. Единичным называют такое производство, при котором выпуск каждого наименования изделий производится в очень небольших количествах. Для единичного производства характерны следующие основные технологические признаки: применение универсального оборудования, применение универсальных приспособлений и стандартного режущего инструмента; разработка технологических процессов, как правило, по наиболее простым формам (маршрутные карты); расстановка станков группами по типам и размерам; применение пригоночных работ при сборке; высокая квалификация рабочих и др. Серийным называется производство, при котором изготовление изделий данного наименования периодически повторяется. В зависимости от величины партии или серии различают мелко-, средне- и крупносерийное производство. Основные технологические признаки серийного производства: проведение на одном рабочем месте одной или нескольких операций; обработка заготовок по технологическому процессу, разделенному на отдельные операции; применение универсального оборудования, специальных и специализированных станков для изготовления основных деталей: расстановка оборудования соответственно технологическому процессу обработки деталей с учетом характерных направлений грузопотоков; широкое применение специальных приспособлений и инструментов: различная квалификация рабочих; взаимозаменяемость и в связи с этим небольшой объем пригоночных работ. Массовым называется такое производство, при котором одинаковые изделия изготавливают в большом количестве в течение длительного времени. Производство, при котором операции обработки заготовок (или сборки машин) закреплены за рабочими местами, расположенными в порядке выполнения операций, а обрабатываемые заготовки или собираемые узлы машин последовательно перемещаются с одного рабочего места на другое, называется поточным. В основу массового производства положены следующие основные технологические признаки: закрепление за каждым рабочим местом одной постоянно повторяющейся операции; обработка заготовок и сборка машин по непрерывно поточному методу; широкое применение агрегатных, автоматических и специальных станков, а также автоматических линий; расстановка оборудования соответственно технологическому процессу обработки деталей; высокая степень оснащенности специальными приспособлениями, инструментами и автоматическими измерительными устройствами; полная взаимозаменяемость; невысокая квалификация рабочих на операционных станках; Технология механической обработки деталей в автоматизированном производстве. В условиях автоматизированного производства от каждой операции зависит надежность работы всей линии, поэтому здесь нет главных и второстепенных операций. В автоматизированном производстве все элементы технологического процесса — подача заготовки, ее ориентирование и закрепление, обработка, снятие готовой детали, контроль, межоперационное транспортирование и т. п. — решаются комплексно. Как правило, почти все технологические процессы, изготовления деталей в неавтоматизированном производстве при переходе к автоматизированному требуют коренной переработки. Основными отличительными особенностями технологии автоматизированного производства являются: применение экономической заготовки, высокая степень концентрации операций, применение высокопроизводительных режущих инструментов с высокой стойкостью, синхронизация технологических операций, высокая стабильность технологических процессов, меньшая трудоемкость и сокращенный цикл изготовления детали, высокое качество готовых деталей. Технологические процессы, разработанные для автоматических линий, дают значительный экономический эффект за счет увеличения производительности труда, повышения качества продукции, ее стабильности, сокращения длительности производственного цикла, облегчения условий труда и др.

3) В машиностроении изделием называется предмет производства, подлежащий изготовлению. В качестве изделия выступает машина, устройство, механизм, инструмент и т. п. и их составные части: сборочная единица, деталь. Сборочная единица — это изделие, составные части которого подлежат соединению на предприятии обособленно от других элементов изделия. Сборочная единица в зависимости от конструкции может состоять либо из отдельных деталей, либо включать сборочные единицы более высоких порядков и детали. Различают сборочные единицы первого, второго и более высоких порядков. Сборочная единица первого порядка входит непосредственно в изделие. Она состоит либо из отдельных деталей, либо из одной или нескольких сборочных единиц второго порядка и деталей. Сборочная единица второго порядка расчленяется на детали или сборочные единицы третьего порядка и детали и т. д. Сборочная единица наивысшего порядка расчленяется только на детали. Рассмотренное деление изделия на составные части производится по технологическому признаку. Деталь — это изделие, изготавливаемое из однородного по наименованию и марке материала без применения сборочных операций. Характерный признак детали — отсутствие в ней разъемных и неразъемных соединений. Деталь представляет собой комплекс взаимосвязанных поверхностей, выполняющих различные функции при эксплуатации машины. Производственный процесс — это совокупность всех действий людей и орудий труда, необходимых на данном предприятии для изготовления и ремонта продукции. Например, производственный процесс изготовления машины включает не только изготовление деталей и их сборку, но и добычу руды, ее транспортирование, превращение в металл, получение заготовок из металла. В машиностроении производственный процесс представляет собой часть общего производственного процесса и состоит из трех этапов: получение заготовки; преобразование заготовки в деталь; сборка изделия. В зависимости от конкретных условий перечисленные три этапа можно осуществлять на разных предприятиях, в разных цехах одного предприятия и даже в одном цехе. Технологический процесс — часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда. Под изменением состояния предмета труда понимается изменение его физических, химических, механических свойств, геометрии, внешнего вида. Кроме того, в технологический процесс включены дополнительные действия, непосредственно связанные или сопутствующие качественному изменению объекта производства; к ним относят контроль качества, транспортирование и др. Для осуществления технологического процесса необходима совокупность орудий производства, называемых средствами технологического оснащения, и рабочее место. Технологическое оборудование — это средство технологического оснащения, в котором для выполнения определенной части технологического процесса размещают материалы или заготовки, средства воздействия на них, а также технологическую оснастку. К ним относят, например, литейные машины, прессы, станки, испытательные стенды и т. д. Технологическая оснастка — это средство технологического оснащения, дополняющее технологическое оборудование для выполнения определенной части технологического процесса. К ним относятся режущий инструмент, приспособления, измерительные средства. Технологическое оборудование совместно с технологической оснасткой, а в некоторых случаях и манипулятором, принято называть технологической системой. Понятием «технологическая система» подчеркивается, что результат технологического процесса зависит не только от оборудования, но и в не меньшей степени от приспособления, инструмента, заготовки. Заготовкой называется предмет труда, из которого изменением формы, размеров, свойств поверхности или материала изготовляют деталь. Заготовку перед первой технологической операцией называют исходной заготовкой. Рабочее место представляет собой элементарную единицу структуры предприятия, где размещены исполнители работы и обслуживаемое технологическое оборудование, подъемно-транспортные средства, технологическая оснастка и предметы труда. По организационным, техническим и экономическим причинам технологический процесс делят на части, которые принято называть операциями. Технологической операцией называется законченная часть технологического процесса, выполняемая на одном рабочем месте. Операция охватывает все действия оборудования и рабочих над одним или несколькими собираемыми объектами производства. При обработке на станках операция включает все действия рабочего, управляющего технологической системой, установку и снятие предмета труда, а также движения рабочих органов технологической системы. Содержание операций изменяется в широких пределах — от работы, выполняемой на отдельном станке или сборочной машине в обычном производстве, до работы, выполняемой на автоматической линии, представляющей собой комплекс технологического оборудования, связанного единой транспортной системой и имеющей единую систему управления в автоматизированном производстве. Число операций в технологическом процессе изменяется от одной (изготовление детали на прутковом автомате, изготовление корпусной детали на многооперационном станке) до десятков (изготовление турбинных лопаток, сложных корпусных деталей). Формируют операцию, главным образом, по организационному принципу, так как она является основным элементом производственного планирования и учета. На операцию обычно разрабатывается вся плановая, учетная и технологическая документация. В свою очередь, технологическая операция также состоит из ряда элементов: технологических и вспомогательных переходов, установа, позиций, рабочего хода. Технологический переход — законченная часть технологической операции, выполняемая одними и теми же средствами технологического оснащения при постоянных технологических режимах и установке. Вспомогательный переход — это законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением свойств предметов труда, но необходимы для выполнения технологического перехода (например, установка заготовки, смена инструмента и т. п.). Переход можно выполнять в один или несколько рабочих ходов. Рабочий ход — это законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, сопровождаемая изменением формы, размеров, качества поверхности и свойств заготовки. При обработке заготовки со съемом слоя материала используют термин «припуск».

5) Настройка по пробным проходам. Различают два метода настройки станка на размер: по пробным проходам и по настройке.При первом методе после установления необходимой длины рабочего хода и режима резания инструмент вручную подводят возможно ближе к крайней кромке обрабатываемой поверхности и приблизительно устанавливают на нужную глубину резания. После этого станок приводят в действие, а резец подводят до соприкосновения с обрабатываемой деталью. Затем при ручной подаче снимают несколько пробных стружек и путем измерения детали проверяют правильность установленной глубины резания. Если она окажется больше или меньше требуемой, то суппорт отводят в первоначальное положение.Основы расчета настроечного размера. Проектирование станочной операции сопровождается расчетами настроечных размеров и ожидаемой точности обработки. Настроечный размер определяют с учетом износа режущего инструмента и упругих отжатий элементов технологической системы. Настроечный размер устанавливают так, чтобы число подналадок за период стойкости инструмента было наименьшим при гарантии исключения брака по непроходной стороне калибра.

6) Смена баз – замена одних баз другими с сохранением их принадлежности к конструкторским, технологическим или измерительным. Конструкторская база – база, используемая для определения положения детали или сборочной единицы в изделии. Они подразделяются на основные и вспомогательные. Основная база – конструкторская база детали или сборочной единицы, используемая для определения их положения в изделии. Вспомогательная база – конструкторская база детали или сборочной единицы, используемая для определения присоединяемого к ним изделия. Технологические базы назначают при технологическом проектировании изготовления изделий и непосредственно в процессе их производства.Технологическая база – база, используемая для определения положения заготовки или изделия при изготовлении и ремонте. При контроле размеров, точности формы и расположения поверхностей выполняются измерения с использованием измерительных баз.Измерительная база – база, используемая для определения относительного положения заготовки или изделия и средств измерения.

Организованная смена баз - смена баз, происходящая с соблюдением определенных условий. Условия организованной смены баз:1. Установить размерную связь между обрабатываемой поверхностью и новой базой. 2. Установить размерную связь между новой и старой базами. 3. Назначить допуск на вновь получившиеся размеры.

8) Смена баз – замена одних баз другими с сохранением их принадлежности к конструкторским, технологическим или измерительным. Конструкторская база – база, используемая для определения положения детали или сборочной единицы в изделии. Они подразделяются на основные и вспомогательные. Основная база – конструкторская база детали или сборочной единицы, используемая для определения их положения в изделии. Вспомогательная база – конструкторская база детали или сборочной единицы, используемая для определения присоединяемого к ним изделия. Технологические базы назначают при технологическом проектировании изготовления изделий и непосредственно в процессе их производства.Технологическая база – база, используемая для определения положения заготовки или изделия при изготовлении и ремонте. При контроле размеров, точности формы и расположения поверхностей выполняются измерения с использованием измерительных баз.Измерительная база – база, используемая для определения относительного положения заготовки или изделия и средств измерения.

Неорганизованная смена баз - смена баз, происходящая без соблюдения каких-либо условий. Возникает неконтролируемая погрешность. Следует избегать неорганизованной смены баз.

7) Для сокращения погрешностей статической настройки при установке приспособлений часто используют направляющие шпонки, которые располагают на основании опорной плиты или корпуса приспособления. Шпонки позволяют быстро и точно установить приспособление по одной из сторон Т-образного паза стола станка.

17) Базирование – придание заготовке или изделию требуемого положения относительно выбранной системы координат. База – поверхность или выполняющее ту же функцию сочетание поверхностей, ось, точка, принадлежащая заготовке или изделию и используемая для базирования. Условие, ограничивающее перемещение, называется геометрической связью. Условие, ограничивающее скорость перемещения, называется кинематической связью. Геометрические связи бывают односторонние и двусторонние. Обобщенными координатами называются независимые параметры, определяющие положение или движение механической системы в пространстве. Свободное твердое тело (не имеющее геометрических и кинематических связей) обладает шестью степенями свободы. Оно может перемещаться вдоль координатных осей и вращаться вокруг этих осей. Для полной определенности положения твердого тела в пространстве необходимо и достаточно наложить на точки тела шесть двусторонних геометрических связей и тем самым лишить его шести степеней свободы. Опорная точка – точка, символизирующая одну из связей заготовки или изделия с выбранной системой координат. Правило шести точек – создание шести опорных точек при базировании. Если по служебному назначению изделие имеет определенное число степеней свободы, то соответствующее количество связей не накладывается. Если требуется обеспечить движение, то накладываются соответствующие кинематические связи. Для формирования системы координат необходим комплект баз. Комплект баз – совокупность трех баз, образующих систему координат заготовки или изделия. Схема базирования – схема расположения опорных точек на базах. Закрепление – приложение сил и пар сил к заготовке или изделию, для обеспечения постоянного их положения, достигнутого при базировании. Установка – базирование и закрепление заготовки или изделия. При базировании детали типа «диск» в качестве баз используются ось и две плоскости, которые образуют комплект, включающий в себя установочную, двойную опорную и опорную базы (рис.7.10). Установочная база - лишает деталь трех степеней свободы. Эта база была рассмотрена при базировании призматической детали. У диска эта база выполняет ту же функцию — она лишает деталь одного перемещения и двух вращений. Первая двусторонняя связь (первая опорная точка) лишает деталь перемещения вдоль оси OY (рис.7.9); вторая - вращения вокруг оси параллельной OZ; третья -вращения вокруг оси параллельной ОХ. Двойной опорной базой называется база, которая накладывает 2 двусторонние связи и лишает деталь 2 перемещений во взаимно перпендикулярных направлениях. Обе двусторонние связи накладываются на оси, но одна в горизонтальной, а другая в вертикальной плоскости симметрии. Опорная база накладывает одну двустороннюю связь и лишает деталь типа «диск» вращения вокруг своей оси. Располагается такая база как можно дальше от оси в горизонтальной или вертикальной плоскости симметрии. Реализуется в виде паза или лыски на цилиндрической поверхности детали.

(17)

18) Базирование – придание заготовке или изделию требуемого положения относительно выбранной системы координат. База – поверхность или выполняющее ту же функцию сочетание поверхностей, ось, точка, принадлежащая заготовке или изделию и используемая для базирования. Условие, ограничивающее перемещение, называется геометрической связью. Условие, ограничивающее скорость перемещения, называется кинематической связью. Геометрические связи бывают односторонние и двусторонние. Обобщенными координатами называются независимые параметры, определяющие положение или движение механической системы в пространстве. Свободное твердое тело (не имеющее геометрических и кинематических связей) обладает шестью степенями свободы. Оно может перемещаться вдоль координатных осей и вращаться вокруг этих осей. Для полной определенности положения твердого тела в пространстве необходимо и достаточно наложить на точки тела шесть двусторонних геометрических связей и тем самым лишить его шести степеней свободы. Опорная точка – точка, символизирующая одну из связей заготовки или изделия с выбранной системой координат. Правило шести точек – создание шести опорных точек при базировании. Если по служебному назначению изделие имеет определенное число степеней свободы, то соответствующее количество связей не накладывается. Если требуется обеспечить движение, то накладываются соответствующие кинематические связи. Для формирования системы координат необходим комплект баз. Комплект баз – совокупность трех баз, образующих систему координат заготовки или изделия. Схема базирования – схема расположения опорных точек на базах. Закрепление – приложение сил и пар сил к заготовке или изделию, для обеспечения постоянного их положения, достигнутого при базировании. Установка – базирование и закрепление заготовки или изделия.

12) Базирование – придание заготовке или изделию требуемого положения относительно выбранной системы координат. База – поверхность или выполняющее ту же функцию сочетание поверхностей, ось, точка, принадлежащая заготовке или изделию и используемая для базирования. Условие, ограничивающее перемещение, называется геометрической связью. Условие, ограничивающее скорость перемещения, называется кинематической связью. Геометрические связи бывают односторонние и двусторонние. Обобщенными координатами называются независимые параметры, определяющие положение или движение механической системы в пространстве. Свободное твердое тело (не имеющее геометрических и кинематических связей) обладает шестью степенями свободы. Оно может перемещаться вдоль координатных осей и вращаться вокруг этих осей. Для полной определенности положения твердого тела в пространстве необходимо и достаточно наложить на точки тела шесть двусторонних геометрических связей и тем самым лишить его шести степеней свободы. Опорная точка – точка, символизирующая одну из связей заготовки или изделия с выбранной системой координат. Правило шести точек – создание шести опорных точек при базировании. Если по служебному назначению изделие имеет определенное число степеней свободы, то соответствующее количество связей не накладывается. Если требуется обеспечить движение, то накладываются соответствующие кинематические связи. Для формирования системы координат необходим комплект баз. Комплект баз – совокупность трех баз, образующих систему координат заготовки или изделия. Схема базирования – схема расположения опорных точек на базах. Закрепление – приложение сил и пар сил к заготовке или изделию, для обеспечения постоянного их положения, достигнутого при базировании. Установка – базирование и закрепление заготовки или изделия. Для базирования данной детали типа вал используются два принципиальных подхода: базирование по наружной цилиндрической поверхности под подшипники и базирование по оси детали. Технически это реализуется при помощи призм- первый вариант- и при помощи центровых отверстий. Центровые отверстия играют роль чистовой базы, т.к. при их использовании погрешность закрепления =0. Центра получают при помощи фрезерно-центровой операции, во время которой для базирования используются призмы:

(12)

24) Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения. Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в БСЭ, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно РМГ 29-99[1] термин ошибка измерения не рекомендуется применять как менее удачный). Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. На практике вместо истинного значения используют действительное значение величины хд, то есть значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него[1]. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2,8±0,1 c. означает, что истинное значение величины T лежит в интервале от 2,7 с. до 2,9 с. некоторой оговорённой вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка). В 2004 году на международном уровне был принят новый документ[2], диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределённость измерений»[источник не указан 580 дней], однако ГОСТ Р 50.2.038-2004[3] допускает использовать термин погрешность для документов, использующихся в России. Абсолютная погрешность — ΔX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, в свою очередь, определяется распределением случайной величины Xmeas. При этом неравенство: ΔX > | Xmeas − Xtrue | , где Xtrue — истинное значение, а Xmeas — измеренное значение, должно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина Xmeas распределена по нормальному закону, то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина. Относительная погрешность — погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или измеренному значению измеряемой величины (РМГ 29-99): , . Приведённая погрешность — погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле , где Xn — нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке: