Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Word (2).doc
Скачиваний:
7
Добавлен:
10.02.2015
Размер:
146.43 Кб
Скачать

    Естествознание  в XVIII – XIX вв.

     Золотой век просвещения – такое название получил период подлинного расцвета классического естествознания, наступившего после ньютонианской революции в физике. Множество открытий и смелых гипотез охватывали области физики, космогонии, биологии и химии, основанные на них изобретения оперативно внедрялись в повседневную жизнь.

     Одним из важнейших вопросов в области  космогонии стало возникновение  Солнечной системы. Иммануил Кант (1724-1804) и Пьер Симон Лаплас (1749-1827) полагали, что все начиналось с газово-пылевой туманности, которая впоследствии превратилась в звезду, вокруг которой вращались планеты.

     Идея  эволюции коснулась не только космогонии, но и других областей знаний. Особое место эпоха просвещения и XIX век заняли в истории биологической науки. Шведский натуралист Карл Линней (1707-1778) созданием бинарной номенклатуры и своей классификацией подвел итог многовековому эмпирическому накоплению биологических знаний.

     Английский  натуралист Чарльз Роберт Дарвин (1809-1882), опираясь на результаты наблюдений, накопленных им к 26 годам во время кругосветного путешествия на военном парусном корвете «Бигль» (капитан Р. Фицрой), создал свою теорию естественного отбора.

     Антуан-Лоран  Лавуазье (1743-1794) в опытах по нагреванию различных веществ в закрытых сосудах установил, что независимо от характера химических процессов и их продуктов, общий вес всех участвующих в реакции веществ не меняется: масса не создается и не уничтожается, а лишь переходит от одного вещества к другому (закон сохранения массы).

     До  середины XIX в. химия развивалась  хаотически: химики открывали новые  химические элементы, описывали их свойства, и так накопили огромный эмпирический материал, нуждавшийся в систематизации. Логическим финалом этого процесса стал I Международный химический конгресс (1860, Карслуэ, Германия), на котором окончательно сформулировали и приняли основополагающие принципы, теории и законы химии. С этого момента начался современный период развития химии, в начале которого были разработаны теории валентности, ароматических соединений, стереохимии, электролитической диссоциации Сванте Аррениуса и др. Главным же стало открытие периодического закона.

     Дмитрий Иванович Менделеев (1834-1907) – великий  русский химик, считал, что любое  точное знание – система, в основе которой лежит единый фактор. В  качестве главной характеристики химических элементов он выбрал атомный вес. Основываясь на изменении валентности  элементов в соответствии с их атомным весом, Менделеев разделил их на периоды. В то время были известны 62 элемента, потому в таблице оказались  пустые клетки для еще неоткрытых элементов. Впоследствии их свойства оказались  именно такими, как предсказал Менделеев. В начале 1999г. появилось сообщение, что в Дубне синтезирован уже 114 й элемент, живущий около 30 секунд.

     Так к XIX вв. постепенно стала утверждаться идея единства и взаимопревращения различных физических процессов, о взаимопревращаемости сил природы.

     Трудами врача Томаса Юнга (1773-1829) и физика Огюстена Жака Френеля (1788-1827) окончательно утвердились пробивавшие себе дорогу с ньютонианской поры представления о волновой природе света, который проявлял такие, хорошо известные любителям кругов на воде волновые свойства, как интерференция (наложение волн) и дифракция (огибание препятствий).

     В первой половине XIX века, появляются самые  разнообразные, изобретения, основанные на новейших открытиях в области  естествознания – фотография (метод  дагерротипов, изобретенный парижанином Луи Жаком Дагером), пароход, паровоз (изобретенная еще в XVIII веке паровая машина перекочевала с мануфактур и возникающих заводов и фабрик на транспорт). Целый ряд изобретений был связан и с электромагнитными явлениями.

     Учение  об электричестве и магнетизме в  первой половине XVIII века получило развитие. Говоря о развитии электростатики и электродинамики нельзя не упомянуть и опыты итальянского врача и физика Алессандро Вольта (1745-1827), создавшего первый источник постоянного тока – вольтов столб, и, наконец, французского математика и физика Андрэ Мари Ампера (1775-1836), который смог перевести результаты опытов с электричеством на сухой язык математики.

     После того, как великий английский физик  и химик Майкл Фарадей (1791-1867) обнаружил  воздействие магнитного поля на световую волну, стало очевидным тождество  электромагнитных и световых волн. Тепловое излучение нагретых тел  оказалось подобным свету электромагнитным излучением, но только с большой  длиной волны – человеческий глаз не мог ее воспринять как свет.

     Новый тип явлений – электромагнитные – потребовал создания новой концепции. Она и была создана Максвеллом на основе опытов Ампера и Фарадея. Язык теории Максвелла был, как и в механике Ньютона, математикой бесконечно малых величин – дифференциальными уравнениями.

«Естествознание XX века»

1. Четвертая научная революция

Еще в конце XIX века большинство ученых склонялись к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой. Предстоит уточнять лишь детали. Но в первые десятилетия XX века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы XIX столетия и первые десятилетия XX века.

В 1896 году французский физик Антуан Анри Беккерель (1852-1908) открыл явление самопроизвольного излучения урановой соли. Исследуя это явление, он наблюдал разряд наэлектризованных тел под действием указанного излучения и установил, что активность препаратов урана оставалась неизменной более года. Однако природа нового явления еще не была понята.

В его исследование включились французские физики, супруги Пьер Кюри (1859-1906) и Мария Склодовская-Кюри (1867-1934). Прежде всего их заинтересовал вопрос: нет ли других веществ, обладающих свойством, аналогичным урану? В 1898 году были открыты новые элементы, также обладающие свойством испускать «беккерелевы лучи», -- полоний и радий. Это свойство супруги Кюри назвали радиоактивностью. Их напряженный труд принес щедрые плоды: с 1898 г. одна за другой стали появляться статьи о получении новых радиоактивных веществ. А годом раньше, в 1897 году, в лаборатории Кавендиша в Кембридже при изучении электрического разряда в газах (катодных лучей) английский физик Джозеф Джон Томсон (1856-1940) открыл первую элементарную частицу -- электрон. В последующих опытах по измерению заряда электрона и получению отношения этого заряда к массе было обнаружено совершенно необычное явление зависимости массы электрона от его скорости. Уяснив, что электроны являются составными частями атомов всех веществ, Дж. Томсон предложил в 1903 году первую (электромагнитную) модель атома. Согласно этой модели, отрицательно заряженные электроны располагаются определенным образом (как бы «плавают») внутри положительно заряженной сферы. Сохранение электронами определенного места в сфере есть результат равновесия между положительным равномерно распределенным ее зарядом и отрицательными зарядами электронов. Но модель «атома Томсона» просуществовала сравнительно недолго.

В 1911 году знаменитый английский физик Эрнест Резерфорд (1871-1937) предложил свою модель атома, которая получила название планетарной. Появлению этой новой модели атома предшествовали эксперименты, проводимые Э. Резерфордом и его учениками, ставшими впоследствии знаменитыми физиками, Гансом Гейгером (1882-1945) и Эрнстом Марсденом (1889-1970). В результате этих экспериментов, показавших неприемлемость модели атома Дж. Томсона, было обнаружено, что в атомах существуют ядра -- положительно заряженные микрочастицы, размер которых очень мал по сравнению с размерами атомов. Но масса атома почти полностью сосредоточена в его ядре. Исходя из этих новых представлений, Резерфорд и выдвинул свое понимание строения атома, которое он обнародовал 7 марта 1911 года на заседании Манчестерского философского общества. По его мнению, атом подобен Солнечной системе: он состоит из ядра и электронов, которые обращаются вокруг него.

Но планетарная модель Резерфорда обнаружила серьезный недостаток: она оказалась несовместимой с электродинамикой Максвелла. Согласно законам электродинамики, любое тело (частица), имеющее электрический заряд и движущееся с ускорением, обязательно должно излучать электромагнитную энергию. Но в этом случае электроны очень быстро потеряли бы свою кинетическую энергию и упали на ядро. С этой точки зрения, оставалась непонятной необычайная устойчивость атомов. Кроме того, в соответствии с законами электродинамики, частота излучаемой электроном электромагнитной энергии должна быть равна частоте собственных колебаний электрона в атоме или (что то же) числу оборотов электрона вокруг ядра в секунду. Но в этом случае спектр излучения электрона должен быть непрерывным, так как электрон, приближаясь к ядру, менял бы свою частоту. Опыт же показывал другое: атомы дают электромагнитное излучение только определенных частот (именно поэтому атомные спектры называют линейчатыми, т. е. состоящими из вполне определенных линий). Такая определенность спектра, его ярко выраженная химическая индивидуальность очень трудно совмещается с универсальностью электрона, заряд и масса которого не зависят от природы атома.

Разрешение этих противоречий выпало на долю известного датского физика Нильса Вора (1885-1962), предложившего свое представление об атоме. Последнее основывалось на квантовой теории, начало которой было положено на рубеже XX века немецким физиком Максом Планком (1858-1947). Планк выдвинул гипотезу, гласящую, что испускание и поглощение электромагнитного излучения может происходить только дискретно, конечными порциями -- квантами.

Н. Бор, зная о модели Резерфорда и приняв ее в качестве исходной, разработал в 1913 году квантовую теорию строения атома. В ее основе лежали следующие постулаты: в любом атоме существуют дискретные (стационарные) состояния, находясь в которых атом энергию не излучает; при переходе атома из одного стационарного состояния в другое он излучает или поглощает порцию энергии.

Предложенная Бором модель атома, которая возникла в результате развития исследований радиоактивного излучения и квантовой теории, фактически явилась дополненным и исправленным вариантом планетарной модели Резерфорда. Поэтому в истории атомной физики говорят о квантовой модели атома Резерфорда -- Бора.

Следует отметить, что научные заслуги Резерфорда не ограничиваются исследованиями, приведшими к упомянутой планетарной модели атома. Совместно с английским химиком Фредериком Содди (1877-1956) он провел серьезное изучение радиоактивности. Резерфорд и Содди дали трактовку радиоактивного распада как процесса превращения химических элементов из одних в другие. «Неизменяемость свойств электронов при обычных физических и химических процессах, -- писал Н. Бор, -- непосредственно объясняется тем, что в таких процессах, хотя связи электронов и могут сильно меняться, ядро остается без изменений. Резерфордом была доказана и взаимная превращаемость атомных ядер под действием мощных сил. Тем самым Резерфорд открыл совершенно новую область исследований, которую часто называют современной алхимией»50.

Как тут не вспомнить крушение стремлений и надежд многих поколений алхимиков получать одни химические элементы (чаще всего -- золото) из других в связи с открытием во второй половине XVIII века Лавуазье закона неизменности химических элементов. И вдруг, в начале XX века, оказалось, что в результате радиоактивного распада некоторые элементы самопроизвольно превращаются в другие. Это было поистине научной сенсацией.

Впрочем, наука XX века принесла немало сенсационных открытий, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером этого может служить теория относительности, созданная в начале нашего столетия мало кому известным тогда мыслителем Альбертом Эйнштейном (1879-1955).

В 1905 г. им была создана так называемая специальная теория относительности. В целом теория А. Эйнштейна основывалась на том, что -- в отличие от механики И. Ньютона -- пространство и время не абсолютны. Они органически связаны с материей и между собой. Когда А. Эйнштейна попросили выразить суть теории относительности в одной, по возможности понятной фразе, он ответил: «Раньше полагали, что если бы из Вселенной исчезла вся материя, то пространство и время сохранились бы, теория относительности утверждает, что вместе с материей исчезли бы также пространство и время».

Более подробно о теории относительности сказано в разделе, посвященном пространственно-временным представлениям. Мы здесь лишь отметим, что эта теория получила признание далеко не сразу. Специальная теория относительности была быстро принята лишь узким кругом известных физиков-теоретиков. Но в 20-х годах, после появления общей теории относительности, этот круг существенно расширился. Эйнштейн получил полную поддержку многих выдающихся ученых, работавших в других областях физики, но обладавших широкой культурой физического мышления.

В то же время существовали и тупая ограниченность в науке, милитаризм и расизм в политике. Не случайно теория относительности была встречена в штыки в фашистской Германии, где к хору злобных голосов, отвергших теорию Эйнштейна как «неарийскую», враждебную национальному германскую сознанию, присоединились такие известные физики-экспериментаторы, как Ленард и Штарк.

Хотя имя А. Эйнштейна по сей день в массовом сознании связывается с теорией относительности, эта теория была далеко не единственным его научным достижением. Опираясь на представление Планка о квантах, Эйнштейн еще в 1905 году сумел обосновать природу фотоэффекта. Каждый электрон выбивается из металла под действием отдельного светового кванта, или фотона, который при этом теряет свою энергию. Часть этой энергии уходит на разрыв связи электрона с металлом. Эйнштейн показал зависимость энергии электрона от частоты светового кванта и энергии связи электрона с металлом.

Казалось, что корпускулярная теория материи торжествует. Фотон, например, явно имеет корпускулярные свойства (русский физик П.Н. Лебедев даже доказал в 1899 году существование светового давления). Но вскоре выяснилось, что определить энергию фотона (частицы света, не обладающей массой покоя) можно было, только представляя его себе в виде волны с соответствующей длиной и частотой. Получалось, что фотон -- это одновременно и волна и частица. Распространяется он как волна, излучается и поглощается -- как частица.

В 1924 году произошло крупное событие в истории физики: французский ученый Луи де Бройлъ (1892-1987) выдвинул идею о волновых свойствах материи. «Почему, если волновой материи присущи свойства корпускулярности, -- писал он, -- мы не вправе ожидать и обратного: что корпускулярной материи присущи волновые свойства? Почему бы не мог существовать закон, единый для всякого вообще материального образования, не важно, волнового или корпускулярного?».

Наиболее убедительное подтверждение существования волновых свойств материи было получено в результате открытия (наблюдения) дифракции электронов в эксперименте, поставленном в 1927 году американскими физиками Клинтоном Дэвиссоном (1881-1958) и Лестером Джермером (1896-1971). Быстрые электроны, проходя сквозь очень тонкие пластинки металла, вели себя подобно свету, проходящему мимо малых отверстий или узких щелей. Другими словами, распределение электронов, отражавшихся от пластинки и летевших лишь по некоторым избранным направлениям, было таким же, как если бы на пластинку падал пучок цвета с длиной волны, равной длине волны электрона, вычисленной по формуле де Бройля.

Экспериментально подтвержденная гипотеза де Бройля превратилась в принципиальную основу, пожалуй, наиболее широкой физической теории -- квантовой механики. У объектов микромира, рассматриваемых с ее позиций, обнаружились такие свойства, которые совершенно не имеют аналогий в привычном нам мире. Прежде всего -- это корпускулярно-волновая двойственность, или дуализм элементарных частиц (это и корпускулы и волны одновременно, а точнее -- диалектическое единство свойств тех и других). Движение микрочастиц в пространстве и времени нельзя отождествлять с механическим движением макрообъекта. Например, положение элементарной частицы в пространстве в каждый момент времени не может быть определено с помощью системы координат, как для привычных нам тел окружающего мира. Движение микрочастиц подчиняется законам квантовой механики.

Об абсолютной непригодности законов классической механики в микромире свидетельствует, например, установленное видным немецким физиком Вернером Гейзенбергом (1901-1976) соотношение неопределенностей: если известно место положения частицы в пространстве, то остается неизвестным импульс (количество движения), и наоборот. Это одно из фундаментальных положений квантовой механики. С точки зрения классической механики и просто «здравого смысла», принцип неопределенности представляется абсурдным. Нам трудно представить себе, как все это может быть «на самом деле».

По этому поводу известный американский физик Ричард Фейнман писал следующее: «Раз поведение атомов так не похоже на наш обыденный опыт, то к нему очень трудно привыкнуть. И новичку в науке, и опытному физику -- всем оно кажется своеобразным и туманным. Даже большие ученые не понимают его настолько, как им хотелось бы, и это совершенно естественно, потому что весь непосредственный опыт человека, вся его интуиция -- все прилагается к крупным телам. Мы знаем, что будет с большим предметом; но именно так мельчайшие тельца не поступают. Поэтому, изучая их, приходится прибегать к различного рода абстракциям, напрягать воображение и не пытаться связывать их с нашим непосредственным опытом».

Все вышеизложенные революционные открытия в физике перевернули ранее существующие взгляды на мир. Исчезла убежденность в универсальности законов классической механики, ибо разрушились прежние представления о неделимости атома, о постоянстве массы, о неизменности химических элементов и т. д. Теперь уже вряд ли можно найти физика, который считал бы, что все проблемы его науки можно решить с помощью механических понятий и уравнений. Рождение и развитие атомной физики, таким образом, окончательно сокрушило прежнюю механистическую картину мира.

Вместе с этим закончился прежний, классический этап в развитии естествознания, характерный для эпохи Нового времени. Наступил новый этап неклассического естествознания XX века, характеризующийся, в частности, новыми, квантово-релятивистскими представлениями о физической реальности.

О́бщая тео́рия относи́тельности(ОТО;нем.allgemeine Relativitätstheorie) —геометрическаятеориятяготения, развивающаяспециальную теорию относительности(СТО), опубликованнаяАльбертом Эйнштейномв19151916 годах.[1][2]В рамках общей теории относительности, как и в другихметрических теориях, постулируется, что гравитационные эффекты обусловлены несиловым взаимодействиемтел иполей, находящихся впространстве-времени, а деформацией самого́ пространства-времени, которая связана, в частности, с присутствием массы-энергии. Общая теория относительности отличается от других метрическихтеорий тяготенияиспользованиемуравнений Эйнштейнадля связикривизныпространства-времени с присутствующей в нёмматерией.

ОТО в настоящее время — самая успешнаятеория гравитации, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальнойпрецессииперигелияМеркурия. Затем, в1919 году,Артур Эддингтонсообщил о наблюдении отклонения света вблизиСолнцав момент полногозатмения, что качественно и количественно подтвердило предсказания общей теории относительности[3]. С тех пор многие другиенаблюдения и экспериментыподтвердили значительное количествопредсказаний теории, включаягравитационное замедление времени,гравитационное красное смещение,задержку сигнала в гравитационном полеи, пока лишь косвенно,гравитационное излучение[4]. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности — существованиячёрных дыр[5].

Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный, во-первых, с тем, что её не удаётся переформулировать как классический предел квантовой теории, а во-вторых, с тем, что сама теория указывает границы своей применимости, так как предсказывает появление неустранимых физических расходимостей при рассмотрении чёрных дыр и вообщесингулярностейпространства-времени. Для решения этих проблем был предложен рядальтернативных теорий, некоторые из которых также являютсяквантовыми. Современные экспериментальные данные, однако, указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.

Специальная теория относительности и ее роль в науке

теория относительность эйнштейн тяготение

Среди систем отсчета особо выделяют инерциальные системы, которые находятся друг относительно друга либо в покое, либо в равномерном и прямолинейном движении. Особая роль инерциальных систем заключается в том, что для них выполняется принцип относительности.

Принцип относительности означает, что во всех инерциальных системах все механические процессы описываются одинаковым образом.

Точнее говоря, в таких системах законы движения тел описываются теми же самыми математическими уравнениями или формулами. Иллюстрируя этот принцип, Галилей приводил пример равномерного прямолинейного движения корабля, внутри которого все явления происходят также как на берегу.

Когда в естествознании господствовала механистическая картина мира и существовала тенденция сводить объяснение всех явлений природы к законам механики, принцип относительности не подвергался никакому сомнению. Положение резко изменилось, когда физики вплотную приступили к изучению электрических, магнитных и оптических явлений. Максвелл объединил все эти явления в рамках единой электромагнитной теории. С созданием этой теории для физиков стала очевидной недостаточность классической механики для описания явлений природы. В связи с этим естественно возник вопрос: выполняется ли принцип относительности и для электромагнитных явлений?

Описывая ход своих рассуждений, создатель теории относительности Альберт Эйнштейн указывал на два аргумента, которые свидетельствовали в пользу всеобщности принципа относительности.

Этот принцип с большой точностью выполняется в механике, и поэтому можно было надеяться, что он окажется правильным и в электродинамике.

Если инерциальные системы неравноценны для описания явлений природы, то разумно предположить, что законы природы проще всего описываются лишь в одной инерциальной системе.

Например, в системе отсчета, связанной с движущимся вагоном, механические процессы описывались бы сложнее, чем в системе, отнесенной к железнодорожному полотну. Еще более показателен пример, когда рассматривается движение Земли вокруг Солнца со скоростью 30 километров в секунду. Если бы принцип относительности в данном случае не выполнялся, то законы движения тел зависели бы от направления и пространственной ориентировки Земли. Ничего подобного, то есть физической неравноценности различных направлений, не обнаружено. Однако здесь возникает кажущаяся несовместимость принципа относительности с хорошо установленным принципом постоянства скорости света в пустоте (300 000 км/с).

Возникает дилемма: либо отказаться от принципа постоянства скорости света, либо -- от принципа относительности. Первый принцип установлен настолько точно, что отказ от него был бы явно неоправданным. К тому же это привело бы к чрезмерному усложнению описания процессов природы. Не меньшие трудности возникают и при отрицании принципа относительности в области электромагнитных процессов.

В действительности, как показал А. Эйнштейн:

Закон распространения света и принцип относительности совместимы. И это положение составляет одну из основ специальной теории относительности.

Кажущееся противоречие принципа относительности закону постоянства скорости света возникает потому, что классическая механика, по заявлению Эйнштейна, опиралась «на две ничем не оправданные гипотезы»:

промежуток времени между двумя событиями не зависит от состояния движения тела отсчета;

пространственное расстояние между двумя точками твердого тела также не зависит от состояния движения тела отсчета.

Исходя из этих, кажущихся вполне очевидными, гипотез, классическая механика молчаливо предполагала, что величины промежутка времени и расстояния имеют абсолютные значения, т. е. не зависят от состояния движения тела отсчета. Выходило, что если человек в равномерно движущемся вагоне проходит, например, расстояние в 1 метр за одну секунду, то этот же путь по отношению к полотну дороги он пройдет тоже за одну секунду. Аналогично этому считалось, что пространственные размеры тел в покоящихся и движущихся системах отсчета остаются одинаковыми.

Понятие пространства и времени в специальной теории относительности.

В ходе разработки своей теории Эйнштейну пришлось пересмотреть прежние представления классической механики о пространстве и времени. Прежде всего, он отказался от ньютоновского понятия абсолютного пространства и времени, а также от определения движения тела относительно этого абсолютного пространства.

Каждое движение тела происходит относительно определенного тела отсчета, и поэтому все физические процессы и законы должны формулироваться по отношению к точно указанной системе отсчета или координат. Следовательно, не существует никакого абсолютного расстояния, длины или протяженности, так же как не может быть никакого абсолютного времени.

Отсюда становится также ясным, что для Эйнштейна основные физические понятия, такие, как пространство и время, приобретают ясный смысл только после указания тех экспериментальных процедур, с помощью которых можно их проверить.

Другой важный результат теории относительности:

Связь обособленных в классической механике понятий пространства и времени в единое понятие пространственно-временной непрерывности (континуума).

Необычные результаты, которые дает теория относительности, сразу же поставили вопрос об их опытной проверке. Наиболее выдающимся подтверждением этой теории был отрицательный результат опыта американского физика Альберта Майкельсона (1852--1931), предпринятый для проверки гипотезы о световом эфире. Согласно господствовавшим в то время воззрениям, все мировое пространство заполнено эфиром -- гипотетическим веществом, являющимся источником световых волн. Вначале эфир уподоблялся упругой механической среде, а световые волны рассматривались как результат колебаний этой среды, то есть, как волны, сходные с появляющимися на поверхности жидкости, вызванные колебаниями частиц жидкости. Но эта механическая модель эфира в дальнейшем встретилась с серьезными трудностями, так как, будучи твердой упругой средой, эфир должен был оказывать сопротивление движению небесных тел, но ничего этого в действительности не наблюдалось. В связи с этим пришлось отказаться от механической модели, но существование эфира как особой всепроницающей среды по-прежнему признавалось.

Для того чтобы обнаружить движение Земли относительно неподвижного эфира, Майкельсон решил измерить время прохождения светового луча по горизонтальному направлению движения Земли и направлению, перпендикулярному к этому движению. Если существует эфир, то время прохождения светового луча по горизонтальному и перпендикулярному направлениям должно быть неодинаковым; но никакой разницы Майкельсон не обнаружил. Тогда для спасения гипотезы об эфире Лоренц предположил, что в горизонтальном направлении происходит сокращение тела в направлении движения.

Полностью отрицательный результат опыта Майкельсона стал для Эйнштейна 18 лет позже решающим экспериментом для доказательства того, что никакого эфира как абсолютной системы отсчета не существует.

3. Общая теория относительности а. Эйнштейна

В специальной теории относительности все системы отсчета предполагаются инерциальными, то есть покоящимися или движущимися друг относительно друга равномерно и прямолинейно. Что произойдет, если одна из систем будет двигаться ускоренно? По своему опыту мы знаем, что в равномерно движущемся вагоне нам кажется, что движется не наш вагон, а неподвижно стоящий рядом поезд. Это впечатление сразу же исчезнет, как только наш вагон сильно затормозит, и мы ощутим толчок вперед. Если принять теперь за систему отсчета замедленно или ускоренно движущийся вагон, то такая система будет неинерциальной.

Создание современной теории тяготения было немыслимым без специальной теории относительности, без глубокого понимания структуры классической электродинамики, без осознания единства пространства-времени. Как уже отмечалось, ОТО была создана в основном усилиями одного человека. Путь Эйнштейна к построению этой теории был долгим и мучительным. Если его работа 1905 года «К электродинамике движущихся сред» появилась как бы сразу в законченном виде, оставляя вне поля зрения читателя длительные размышления, тяжелый труд автора, то с ОТО дело обстояло совершенно иначе. Эйнштейн начал работать над ней с 1907 года. Его путь к ОТО продолжался несколько лет. Это был путь проб и ошибок, который хотя бы отчасти можно проследить по публикациям Эйнштейна в эти годы.

В последнем этапе создания ОТО принял участие Гильберт. Вообще значение математики (и математиков) для ОТО очень велико. Ее аппарат, тензорный анализ, или абсолютное дифференциальное исчисление, был развит Риччи и Леви-Чивита. Друг Эйнштейна, математик Гроссман познакомил его с этой техникой.

И все же ОТО -- это физическая теория, в основе которой лежит ясный физический принцип, твердо установленный экспериментальный факт. Факт этот по существу был установлен еще Галилеем. В системе отсчёта, свободно движущейся в гравитационном поле, в малой области пространства-времени гравитации нет. Последнее утверждение -- это одна из формулировок принципа эквивалентности.