Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Итоговые / БХ итоговая 6 (большой файл)

.pdf
Скачиваний:
20
Добавлен:
02.07.2023
Размер:
9.92 Mб
Скачать

Водно-электролитный состав и жидкостные пространства организма

1.Вода составляет 45—80% веса тела в зависимости от содержания жира в организме. Вода распределена во внутриклеточном и внеклеточном пространствах.

2.Внеклеточная жидкость омывает клетки снаружи и содержит большую часть натрия организма. Внеклеточная жидкость подразделяется на интерстициальную и внутрисосудистую (плазму). Для жизнеобеспечения наиболее важен водно-электролитный баланс внутрисосудистой жидкости, поэтому лечение должно быть направлено в первую очередь на его восстановление.

3.Состав внутриклеточной и внеклеточной жидкости

Натрий — основной катион и осмотически активный компонент внеклеточной жидкости. Калий — основной катион и осмотически активный компонент внутриклеточной жидкости. Вода свободно проходит через клеточные мембраны, выравнивая осмотическое давление внутриклеточной и внеклеточной жидкостей. Измеряя осмоляльность одного пространства

(например, плазмы), мы оцениваем осмоляльность всех жидкостных пространств организма.

37. Роль воды и минеральных веществ в процессах жизнедеятельности. Основные функции воды

1 Регулирование температуры тела

2 Увлажнение воздуха, поступающего в организм 3 Доставка питательных веществ и кислорода во все клетки организма 4 Защита и буферизация жизненно важных органов 5 Преобразование пищи в энергию 6 Усвоение питательных веществ органами

7 Выведение отходов процессов жизнедеятельности:

Вода идеальный растворитель в организме, она сохранит вашу энергию, сделает вес меньше, мышцы сильнее, суставы эластичнее, необходима пищ сис-ме да и вообще всем физиологическим процессам. И если вас спросят: какова роль воды в организме? Мы гордо ответим: Роль воды неоценима! Её значимость можно сравнить лишь с минеральными веществами, которые так же играют огромную физиологическую роль в организме человека и животных. Они входят в состав всех клеток, обусловливают структуру клеток и тканей; в организме они необходимы для обеспечения всех жизненных процессов дыхания, роста, обмена веществ, образования крови, кровообращении, деятельности центральной нервной системы и оказывают влияние на коллоиды тканей и ферментативные процессы. Они входят в состав или активируют до трехсот ферментов.

Основной источник поступления минеральных веществ в организм человека - пищевые продукты растительного и животного происхождения. Питьевая вода покрывает лишь до 10% суточной потребности в таких микроэлементах как J, Си, Zn, Mn, Со, Мо и только для отдельных микроэлементов (F, Sr) может служить главным источником их поступления в организм. Содержание разных микроэлементов в пищевом рационе зависит от геохимических условий местности, в которой были получены продукты, а также от набора пищевых продуктов, входящих в рацион

Кальций входит в состав минерального компонента костной ткани — оксиапатита, микрокристаллы которого образуют жесткую структуру костной ткани, выполняющей защитноопорную функцию. Кальций придает стабильность клеточным мембранам — наружной обо­лочке клеток; обеспечивает прочность межклеточных связей. Кальций необходим для нормальной возбудимости нервной сис­темы и сократимости мышц, является важнейшим компонентом свертывающей системы крови.

Всасывание кальция происходит в тонкой кишке с участием особых транспортных механизмов, обеспечивающих возможность его переноса из просвета кишечника в кровоток. При этом всасывание кальция зави­сит от обеспеченности организма витамином D, который необходим для нормального функционирования систем транспорта кальция в тонкой кишке.

Кальций относится к трудноусвояемым минеральным элементам, что обусловлено его содержанием в пищевых продуктах совместно с другими минеральными компонентами — фосфором, магнием, а также с белками и жирами. Всасыванию кальция способствуют белки пищи, ли­монная кислота и лактоза (молочный сахар). К факторам, затрудняющим всасывание кальция и способным нарушить его утилизацию, относится избыточное содержание в пище фитиновой кис­лоты (ею богаты рожь, пшеница, овес и пищевые продукты, полученные из этих злаков), фосфатов (продукты с очень высоким содержанием фос­фора: шоколад, икра, мясо, рыба морская), жиров, щавелевой кислоты (некоторые овощи, фрукты).

Основными источниками кальция являются молоко и молочные продукты, яичные желтки, овощи, фрукты.

Фосфор участвует в построении всех клеточных элементов орга­низма человека, особенно костной и мозговой тканей, участвует в процессах обмена белков, жиров и углеводов. Фосфор незаменим в деятельности мозга, скелетной и сердечной муску­латуры, в образовании ряда гормонов и ферментов.

Основными источниками фосфора служат молочные продукты, особенно сыры, а также яйца, рыба, мясо, бобовые.

Магний принимает участие в процессах углеводного, белкового и фосфорного обмена. Соединения магния обладают антиспастическими и сосудорасширяющими свойствами, понижают возбудимость централь­ной нервной системы, а также усиливают желчеотделение и моторную деятельность кишечника.

Основными источниками магния в питании являются хлеб (особенно грубого помола), крупы, бобовые.

Натрий необходим для протекания процессов внутриклеточного и межклеточного обмена, для обеспечения электролитного и кислотно-ще­лочного равновесия. Известно, что увеличение содержания в пище хло­ристого натрия (поваренной соли) ведет к задержке воды в организме и отекам. Пищевые продукты, особенно растительные, бедны натрием. Поступление натрия в организм в основном осуществляется за счет поваренной соли, добавляемой к пище.

Хлор играет важную роль в жизнедеятельности человеческого ор­ганизма, особенно в регуляции водного обмена. Хлориды являются ис­точником образования железами желудка соляной кислоты. В пищевых продуктах, особенно растительных, хлор содержится в незначительных количествах. У человека потребность в хлоридах удовлетворяется в ос­новном за счет поваренной соли, добавляемой к пище.

Калий участвует в ферментативных процессах организма. Калий является преимущественно внутриклеточным ионом. Взаимодействие его с внекле­точными ионами натрия имеет большое значение в регуляции водного обмена. Организм очень чувствителен к уменьшению концентрации калия в крови (гипокалиемия). Оно вызывает сонливость, мышечную слабость, потерю аппетита, тошноту, рвоту, уменьшение мочеотделения, расширение сердца, нарушение сердечного ритма, снижение кровяного давления и другие изменения. Источником калия в пище являются в основном продукты растительного происхождения: хлеб, бобовые, картофель, ка­пуста, морковь, фрукты. Максимальное содержание калия — в конди­терских изделиях, какао, миндале, земляных орехах (арахисе), изюме, кураге, черносливе.

Сера входит в состав некоторых аминокислот — основного струк­турного материала для синтеза белков, ферментов, гормонов (инсулина), витаминов (В1). Она играет важную роль в процессах окисления и вос­становления, а также в обезвреживании токсических продуктов обмена путем образования с ними в печени неядовитых химических соединений. Источником серы в пище служат мясо, рыба, сыры, яйца, бобо­вые, хлеб, крупы.

Микроэлементы

Железо является составной частью гемоглобина, сложных железо-белковых комплексов и ряда ферментов, усиливающих процессы дыха­ния в клетках. Железо стимулирует кроветворение.

Основным источником железа служат зерновые продукты, бобовые, яйца, творог, печень. В овощах, фруктах, ягодах железа сравнительно мало, но они служат ценным источником этого минерала, так как содер­жащееся в них железо легко усваивается организмом человека.

Всасыванию железа из пищевых продуктов способствуют лимонная и аскорбиновая кислоты и фруктоза, которые содержатся во фруктах, ягодах, соках. Так, при питье фруктового сока увеличивается усвоение железа из яиц и хлеба. В зерновых и бобовых продуктах и некоторых ово­щах содержатся фосфаты, фитины и щавелевая кислота, препятствующие всасыванию железа. При добавлении мяса или рыбы к этим продуктам усвоение железа улучшается, при добавлении молочных продуктов — не меняется, при добавлении яиц — ухудшается. Подавляет усвоение железа крепкий чай.

Кобальт - неизменная составляющая растительных и животных ор­ганизмов. Он оказывает существенное влияние на процессы кроветворе­ния. Это воздействие кобальта наиболее ярко выражено при достаточно высоком содержании в организме железа и меди. Кобальт активирует ряд ферментов, усиливает синтез белков, учас­твует в выработке витамина В12 и в образовании инсулина. Содержание кобальта в различных пищевых продуктах незначи­тельно. Однако обычно смешанные пищевые рационы вполне удовлет­воряют потребность организма в кобальте. Кобальт содержится в не­значительных количествах в мясе, рыбе, яйцах, молочных продуктах, картофеле, воде. Более богаты кобальтом печень, почки, свекла, горох, земляника, клубника.

Медь входит в состав окислительных ферментов, участвующих в тканевом дыхании, в обмене белков, жиров и углеводов. Она влияет на функциональное состояние печени, щитовидной и других эндокринных желез, на иммунные процессы.

Йод участвует в образовании гормона щитовидной железы — тирок­сина. При недоста­точном поступлении в организм йода нарушаются функции щитовидной железы, а впоследствии меняется и ее структура — вплоть до развития так называемого эндемического зоба. В организм йод поступает с пищей, водой и воздухом, однако он присутствует в них в очень неболь­ших количествах. Больше всего йода содержится в морской воде, в растительных и животных продуктах моря.

Фтор – участвует в костеобразовании, формировании твердых тканей зубов и зубной эмали. Фтор поступает в организм человека в ос­новном с питьевой водой. Оптимальной концентрацией фтора в питьевой воде является 0,5-1,2 мг на литр. При значительном снижении его уровня в воде (менее 0,5 мг на литр) развиваются явления недостаточности фтора, выражающиеся в резком учащении заболеваний зубным кариесом. В целях профилактики в соответствующих случаях фторирование питье­вой воды с доведением содержания в ней фтора до 0,7-1,2мг на литр.

Цинк содержится во всех органах и тканях человека. Наибольшая его концентрация выявлена в клетках поджелудочной железы, вырабатываю­щих гормон инсулин. Цинк участвует также в жировом, белковом и витаминном обмене, в процессах кроветворения и синтезе ряда гормонов.

Обычный набор пищевых продуктов, включающий достаточное количес­тво овощей, фруктов, хлеба и молока, удовлетворяет потребности орга­низма человека во всех необходимых ему минеральных веществах.

38. Регуляция водно-электролитного обмена. Строение и функции альдостерона, вазопрессина и ренин-ангиотензиновой системы, механизм регулирующего действия.

Альдостерон - наиболее активный минера-локортикостероид, синтезирующийся в коре надпочечников из холестерола.

АКТГ. Однако наиболее важное влияние на секрецию альдостерона оказывает ренинангиотензиновая система.

Альдостерон не имеет специфических транспортных белков, но за счёт слабых взаимодействий может образовывать комплексы с альбумином. Гормон очень быстро захватывается печенью, где превращается в тетрагидроальдостерон-3-глюкуронид и экскретируется с мочой.

Механизм действия альдостерона

В клетках-мишенях гормон взаимодействует с рецепторами, которые могут быть локализованы как в ядре, так и в цитозоле клетки. Образовавшийся комплекс гормон-рецептор взаимодействует с определённым участком ДНК и изменяет скорость транскрипции специфических генов. Результат действия альдостерона - индукция синтеза: а) белков-транспортёров Na+ из просвета канальца в

эпителиальную клетку почечного канальца; б) Nа+,К+,-АТФ-азы, обеспечивающей удаление ионов натрия из клетки почечного канальца в межклеточное пространство и переносящей ионы калия из межклеточного пространства в клетку почечного канальца; в) белков-транспортёров ионов калия из клеток почечного канальца в первичную мочу; г) митохондриальных ферментов ЦТК, в частности цитратсинтазы, стимулирующих образование молекул АТФ, необходимых для активного транспорта ионов. Суммарным биологическим эффектом индуцируемых альдостероном белков является увеличение реабсорбции ионов натрия в канальцах нефронов, что вызывает задержку NaCl в организме, и возрастание экскреции калия.

Антидиуретический гормон

Антидиуретический гормон (АДГ), или вазопрессин - пептид с молекулярной массой около 1100 Д, содержащий 9 аминокислот, соединённых одним дисульфидным мостиком

Механизм действия

Для АДГ существуют 2 типа рецепторов: V1 и V2. Рецепторы V2, опосредующие главный физиологический эффект гормона, обнаружены на базолатеральной мембране клеток собирательных трубочек и дистальных канальцев - наиболее важных клеток-мишеней для АДГ, которые относительно непроницаемы для молекул воды. В отсутствие АДГ моча не концентрируется и может выделяться в количествах, превышающих 20 л в сутки (норма 1,0-1,5 л в сутки). Связывание АДГ с V2(рис. 11-32) стимулирует аденилатциклазную систему и активацию протеинкиназы А. В свою очередь, протеинкиназа А фосфорилирует белки, стимулирующие экспрессию гена мембранного белка - аквапорина-2. Аквапорин-2 перемещается к апикальной мембране собирательных канальцев и встраивается в неё, образуя водные каналы. Это обеспечивает избирательную проницаемость мембраны клеток для воды, которые свободно диффундируют в клетки почечных канальцев и затем поступают в интерстициальное пространство. Поскольку в результате происходит реабсорбция воды из почечных канальцев и экскреция малого объёма высококонцентрированной мочи (антидиурез), гормон называют антидиуретическим гормоном.

Роль системы ренин-ангиотензин- альдостерон в регуляции водно-солевого обмена Главным механизмом регуляции синтеза и секреции альдостерона служит система

ренинангиотензин.

Ренин - протеолитический фермент, продуцируемый юкстагломерулярными клетками, расположенными вдоль конечной части афферентных (приносящих) артериол, входящих в почечные клубочки.

Система ренинангиотензинальдостерон. Ренин, протеолитический фермент, катализирует превращение ангиотензиногена (гликопротеина) в ангиотензин I (декапептид). 1 - ренин, протеолитический фермент, катализирует превращение ангиотензиногена (глйкопротеина) в ангиотензин I; 2 - ангиотензин I превращается в ангиотензин II под действием АПФ, отщепляющего два аминокислотных остатка от декапептида; 3 - ангиотензин II стимулирует синтез и секрецию альдостерона; 4 - ангйотензин II вызывает сужение сосудов периферических артерий; 5 - альдостерон стимулирует реабсорбцию Na+ и экскрецию К+; 6, 7, 8, 9 - торможение секреции ренина и альдостерона по механизму отрицательной обратной связи. Пунктирные линии - регуляция по принципу обратной связи.

39. Механизмы поддержания объема, состава и рН жидкостей организма.

Важнейшие параметры вводно-солевого гомеостаза - осмотическое давление, рН и объём внутриклеточной и внеклеточной жидкости. Изменение этих параметров может привести к изменению АД, ацидозу или алкалозу, дегидратации и отёкам тканей. Основные гормоны, участвующие в тонкой регуляции водно-солевого баланса и действующие на дистальные извитые канальцы и собирательные трубочки почек: антидиуретический гормон (АДГ), альдостерон и предсердный натриуретический фактор (ПНФ).

Уменьшение общего объёма жидкости, например в результате кровопотери, при обильной рвоте, диарее вызывает высвобождение ренина. Этому способствует также снижение импульсации от барорецепторов предсердий и артерий в результате уменьшения внутрисосудистого объёма жидкости. В результате увеличивается продукция ангиотензина II, наиболее мощного стимулятора секреции альдостерона. Повышение концентрации альдостерона в крови вызывает задержку ионов натрия, что является сигналом для осморецепторов гипоталамуса и секреции из нервных окончаний передней доли гипофиза АДГ, стимулирующего реабсорбцию воды из собирательных трубочек. Ангиотензин II, оказывая сильное сосудосуживающее действие, повышает АД и, кроме этого, усиливает жажду. Поступающая с питьём вода в большей мере, чем это происходит в норме, задерживается в организме. Увеличение объёма жидкости а, также повышение АД приводят к устранению стимула, который вызвал активацию ренинангиотензиновой системы, секрецию альдостерона и восстановление объёма крови

Действием предсердного натриуретического фактора является увеличение экскреции Na+ и понижение АД

Состав регулируют органы имеющие рецепторы к различным веществам и минералам, которые в ответ на изб/недост выделяют либо гормон либо сам минерал (если орган явл депо) , кислотность также, только в основном регулируется почками. пониженная кислотность исправляется выделением кислых солей, а повышенная – бикарбонатов.

40. Гипо- и гипергидратация водно-электролитных пространств. Причины возникновения.

Гипергидратация -избыточное содержание воды в организме или отдельных его частях. Является формой нарушения водно-солевого обмена.

Клинически у больных появляются отёки на лице, ногах, развивается асцит, отёк легких и мозга. Вода в организме человека содержится как в клетке, так и во внеклеточном секторе

(внутрисосудистая, интерстициальная и трансцеллюлярная его часть), на долю которого приходится 30 % её общего количества.

При почечной недостаточности гипергидратация связана прежде всего с нарушением состава и объёма внеклеточного сектора жидкости. В свою очередь, это влияет и на внутриклеточный сектор, изменяя тканевой метаболизм в сторону катаболических процессов с распадом белков, жиров и углеводов. Освобождающиеся при этом биологически активные вещества, ранее находившиеся в связанном состоянии внутри клетки, поступают во внеклеточный сектор, вызывая серьёзные гуморальные сдвиги.

В случае, если больной выпивает более трёх литров воды в течение часа, происходит резкое развитие уремической интоксикации, больные нередко гибнут в таких ситуациях от гипокалиемии, отёка легких и отёка мозга.

Гипергидратация наряду с патогенетическим лечением вызвавшего её заболевания требует соответствующей дегидратационной терапии.

Отравление водой сопровождается такими симптомами, как: падение температуры тела, начинается слюноотделение, тошнота, рвота, нарушение координации движений, появляются судороги, мышечная слабость, головная боль. (Также можно заметить по симптомам, схожим с обычным отравлением.)

ВИДЫ

-Внеклеточная гипергидратация (h. extracellularis) — гипергидратации подвергается всё внеклеточное пространство или только интерстициальная ткань. Данный вид гипергидратации обычно связан с задержкой в организме человека электролитов.

-Клеточная гипергидратация (h. cellularis) или интрацеллюлярный отёк — характеризуется накоплением воды в клетках. Данный вид гипергидратации развивается при введении в организм чрезмерного количества воды или гипотонических растворов.

-Общая гипергидратация (h. communis) или «водное отравление» или «водная интоксикация» — гипергидратации подвергается весь организм. Как правило это гипоосмотическая гипергидратация. Данный вид гипергидратации наблюдается при повышенном поступлении воды в организм в сочетании с её недостаточным выделением.

-Гиперосмотическая или гиперосмолярная гипергидратация (h. hyperosmotica) — характеризуется повышенным осмотическим давлением жидкостей. Данный вид гипергидратации например наблюдается при вынужденном питье морской воды.