Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Итоговые / БХ итоговая 4

.pdf
Скачиваний:
3
Добавлен:
02.07.2023
Размер:
9.52 Mб
Скачать

16. Всасывание аминокислот, поступление аминокислот в клетки тканей.

17. Общая схема источников и путей расходования аминокислот в тканях.

18. Трансаминирование аминокислот, химизм, ферменты. Аминокислоты, участвующие в трансаминировании.

Трансаминирование есть реакции межмолекулярного переноса аминогруппы от аминокислоты на альфа-кетокислоту без промежуточного образования аммиака.

Реакция трансаминирования являются обратимыми и универсальными для всех живых организмов. Эти реакции протекают при участии специфических ферментов, аминотрансферазы или трансаминазы.

Аминотрансферазы обладают субстратной специфичностью к разным аминокислотам. В тканях человека более 10 разных аминотрансфераз.

Главные ферменты.

-аланиаминотрансфераза (АЛТ);

-глутамат-пируватаминотрансфераза (ГПТ);

-аспартатаминотрансфераза (АСТ);

-по обратной реакции глутама-оксалоацетатаминотрансфераза (ГОТ).

В переносе аминогруппы активное участие принимает кофермент трансаминаз пиридоксальфосфат, производное витамина В6, который процессе реакции обратимо превращается в пиридоксаминфосфат.

Биологическая роль - ОЧЕНЬ важная. Трансаминирование есть заключительный этап синтеза заменимых аминокислот из соответствующих альфа-кетокислот, если они НУЖНЫ, НЕОБХОДИМЫ клеткам в данных момент. Также трансаминирование это первая стадия дезаминирования большинства аминокислот, т.е. начальный этап их катаболизма. Общее число аминокислот в клетке не меняется.

19. Специфичность трансаминаз, коферментная функция витамина В6. Аминотрансферазы (трансаминазы) — ферменты из группы трансфераз,

переносящие аминогруппы без образования свободного аммиака. Аминотрансферазы также называют трансаминазами, а реакцию — трансаминированием.Для аминотрансфераз донором аминогрупп являются аминокислоты, а акцептором — кетокислоты:

AK1 + KK2 ↔ KK1 + AK2

В составе простетической группы аминотрансферазы содержат производные витамина B6. Во время переноса аминогруппы простетическая группа переходит из пиридоксаль-5-фосфатной формы в пиридосамино-5-фосфатную форму. Механизм реакции трансаминирования открыт в 1937 году советскими учеными А.Е. Браунштейном и М.Г.Крицман. Процесс протекает в две стадии. Альдегидная группа пиридоксальфостфата (-СНО) взаимодействует с аминогруппой аминокислоты с образованием иминной связи в основании Шиффа: сначала α-аминогруппа аминокислоты-донора замещает ε-аминогруппуапофермента, а затем происходит перегруппировка через кетимин и в результате гидролиза образуется пиридосамино-5-фосфат и α-кетокислота. Реакции повторяются в обратном порядке Аминотрансферазы являются каталитически совершенными ферментами. Аминотрансферазы

содержаться практически во всех органах, но наиболее активно реакции трансаминирования идут в печени. К этой группе ферментов относятся такие важные для клинической лабораторной диагностики ферменты, как АСТ и АЛТ.

Пиридоксальфосфат является простетической группой аминотранс-фераз, катализирующих обратимый перенос аминогруппы (NH2-группы) от аминокислот на α-кетокислоту, и декарбоксилаз аминокислот, осуществляющих необратимое отщепление СО2 от карбоксильной группы аминокислот с образованием биогенных аминов. Установлена кофер-ментная роль пиридоксальфосфата в

ферментативных реакцияхнеокислительного дезаминирования серина и треонина, окисления трипто фана, кинуренина, превращения серосодержащих аминокислот, взаимопревращения серина и глицина, а также в синтезе δ-аминолевулиновой кислоты,

являющейсяпредшественником молекулы гема гемоглобина. В последние годы число вновь открытых пиридокса-левых ферментов быстро увеличивалось. Так, для действия гликогенфосфорилазы существенной оказалась фосфорильная, а не альдегидная группа пиридоксальфосфата.

Вследствие широкого участия пиридоксальфосфата в процессах обмена при недостаточности витамина В6 отмечаются разнообразные нарушения метаболизма аминокислот.

20. Особая роль глутамата в реакциях трансаминирования.

Чаще всего в реакциях трансаминирования участвуют аминокислоты, содержание которых в тканях значительно выше остальных - глу-тамат, аланин, аспартат и соответствующие им кетокислоты - α-кетоглутарат, пируват и оксалоацетат. Основным донором аминогруппы служит глутамат.

Акцептором аминогруппы любой аминокислоты, подвергающейся трансаминированию (аминокислота 1), служит α-кетоглутарат. Принимая аминогруппу, он превращается в глутамат, который способен передавать эту группу любой α-кетокислоте с образованием другой аминокислоты (аминокислота 2).

21. Биологическое значение реакций трансаминирования.

Реакции трансаминирования играют большую роль в обмене аминокислот. Поскольку этот процесс обратим, ферменты аминотрансферазы функционируют как в процессах катаболизма, так и биосинтеза аминокислот. Трансаминирование - заключительный этап синтеза заменимых аминокислот из соответствующих α-кетокислот, если они в данный момент необходимы клеткам. В результате происходит перераспределение аминного азота в тканях организма. Трансаминирование - первая стадия дезаминирования большинства аминокислот, т.е. начальный этап их катаболизма. Образующиеся при этом кетокислоты окисляются в ЦТК или используются для синтеза глюкозы и кетоновых тел. При трансаминировании общее количество аминокислот в клетке не меняется.

При трансамиеировании происходит образование новой альфакетокислоты и новой аминокислоты без промежуточного образования аммиака

22. Определение трансаминаз в сыворотке крови, принцип, диагностическое значение.

Аминотрансферазы - ферменты, катализирующие межмолекулярный перенос аминогруппы с аминокислоты на кетокислоту. Наибольшее значение имеет определение активности 2-х ферментов: аспартатаминотрансферазы (АсАТ) и аланинаминотрансферазы (АлАТ). Их много, они везде.

Всего капитально два метода:

1.С использованием стандартных реактивов. В результате реакции пировиноградной кислоты получается... субстанция коричневого-фиолетового цвета.

2.Унифицированный метод.

- Определение активности аспартатаминотрансферазы.

Основан на определении скорости образования НАД за счет окисления НАД+Н. В результате реакции уменьшается оптическая плотность растора.

- Определение активности аспартатаминотрансферазы.

Основан на определении скорости образования НАД за счет окисления НАД+Н. В результате реакции уменьшается оптическая плотность растора.

Диагностическое значение:

Определение активности АсАТ и АлАТ широко используется для диагностики болезней печени и заболеваний сердца.

Актиность АлАТ увеличивается при обострении хронического гепатита, при токсическом поражение сердца.

Активность АсАТ возрастанет при гипертонических кризах, инфарктах.

23. Окислительное дезаминирование аминокислот, химизм, ферменты, биологическое значение.

Наиболее активно происходит дезаминироание глутаминовой кислоты, процесс катализирует фермент глутаматдегидрогеназа, ну а верный ассистент - кофермент это НАД+.

Реакции идет в 2 этапа.

1.Вначале происходит ферментативное дегидрирование глутамата и образование альфаиминоглутарата.

2.Неферментативное гидролитическое отщепление иминогруппы в виде аммиака, в результате чего образуется альфа-кетоглутарат.

Глутаматдегидрогеназа очень активна в митохондриях клеток практически всех органов, кроме мышц. Этот ферментолигомер из 6 субъединиц. Играет важную роль, т.к. является регуяторным ферментом аминокислотного обмена.

Ингибиторы - АТФ, ГТФ и НАДН. Активаторы - высокая концентрация АДФ.

Биологическая роль - регуляторным ферментом аминокислотного обмена.

24. Окислительное дезаминированиеглутаминовой кислоты. Глутаматдегидрогеназа.

ЭТО ЕСТЬ обратимая реакция и при повышении концентрации аммиака в клетке может протекать в обратном направлении, как восстановительное аминирование α-кетоглутарата. Глутаматдегидрогеназа очень активна в митохондриях клеток практически всех органов, кроме мышц. Этот фермент - олигомер, состоящий из 6 субъединиц. Глутаматдегидрогеназа играет важную

роль, так как является регуляторным ферментом аминокислотного обмена. Аллостерические ингибиторы глутаматдегидрогеназы (АТФ, ГТФ, NADH) вызывают диссоциацию фермента и потерю глутаматдегидрогеназной активности. Высокие концентрации АДФ активируют фермент. Таким образом, низкий энергетический уровень в клетках стимулирует разрушение аминокислот и образование α-кетоглутарата, поступающего в ЦТК как энергетический субстрат. Синтез глутаматдегидрогеназы может индуцироваться стероидными гормонами (кортизолом).

25. Непрямое дезаминирование, трансдезаминирование, химизм, биологическая роль.

Большинство аминокислот не способно де-заминироваться в одну стадию, подобно Глу. Аминогруппы таких аминокислот в результате трансаминирования переносятся на α-кетоглутарат с образованием глутаминовой кислоты, которая затем подвергается прямому окислительному дезаминированию. Такой механизм дезаминирования аминокислот в 2 стадии получил название трансдезаминирования, или непрямого дезаминирования.

Непрямое дезаминирование аминокислот происходит при участии 2 ферментов: амино-трансферазы (кофермент ПФ) и глутаматдегид-рогеназы (кофермент NAD+).

+Значение этих реакций в обмене аминокислот очень велико, так как непрямое деза-минирование - основной способ дезаминирования большинства аминокислот. Обе стадии непрямого дезаминирования обратимы , что обеспечивает как катаболизм аминокислот, так и возможность образования практически любой аминокислоты из соответствующей α-кетокислоты.

26. Декарбоксилирование аминокислот, химизм, биологическая роль.

Декарбоксилирование - процесс отщепления карбоксильной группы аминокислот в виде СО2. В результате этих процессов в животных тканях образуются биогенные амины.

Реакции декарбоксилирования необратимы катализируются ферментами декарбоксилаза. Их простетическая группа - пиридоксальфосфат.

Механизм реакции напоминают РЕАКЦИЮ трансаминирования с участием пиридоксальфостфат и также осущестляется путем образования шиффова основания ПФ и аминокислоты.

27. Биогенные амины, происхождение, функции.

Что такое биогенные амины? Это амины, образовавшиеся при декарбоксилировании аминокислот. Они играют ряд физиологически ролей:

-нейромедиаторы (серотонин, дофамин, ГАМК и др.);

-гормоны (норадреналин, адреналин);

-регуляторные факторы местного действия (гистамин, карнозин, спермин и др.);

Накопление биогенных аминов может сказаться плохим образом на физиологическом статусе и вызывать нарушения функций в организме. Потому, есть ряд механизмов по их обезвреживанию, и всё сводится к окислительному дезаминированию этих аминов с образование соответствующих альдегидов и освобождению аммиака.

Ферменты, катализирующие эту реакцию называются моноамин- и диаминоксидазы. И снова, две стадии:

-анаэробная стадия, характеризуется образованием альдегида, аммиака и восстановленного фермента.

-Затем фермент окисляет атомарным кислородом, образуется перекись водорода, которая распадает на воду и ксилород.

28. Образование серотонина и гистамина. Роль аминов.

Серотонин - биологическое активное вещество широкого спектра действия. Стимулирует сокращение гладкой мускулатуры, оказывает сосудосоуживающий эффект, регулирует АД, температуру тела, дыхание, обладает антидепрессантным действием.

Гистамин образуется путём декарбоксилирования гистидина в тучных клетках соединительной ткани Выполняет в организме человека следующие функции:

стимулирует секрецию желудочного сока, слюны (т.е. играет роль пищеварительного гормона);

повышает проницаемость капилляров, вызывает отёки, снижает АД (но увеличивает внутричерепное давление, вызывает головную боль);

сокращает гладкую мускулатуру лёгких, вызывает удушье;

участвует в формировании воспалительной реакции - вызывает расширение сосудов, покраснение кожи, отёчность ткани;

вызывает аллергическую реакцию;

выполняет роль нейромедиатора;

является медиатором боли.

29. Образование катехоламинов и ГАМК, функции аминов.

Катехоламины прямо или косвенно повышают активность эндокринных желез, стимулируют гипоталамус и гипофиз. При любой напряженной работе, особенно физической, содержание в крови катехоламинов увеличивается. Это приспособительная реакция организма к нагрузке любого рода. И чем более выражена реакция, тем лучше организм приспосабливается, тем быстрее достигается состояние тренированности. При интенсивной физической работе повышение температуры тела, учащение сердцебиения и др. вызвано выделением в кровь большого количества катехоламинов. Адреналин, его называют «гормоном страха» из-за того, что при испуге сердце начинает биться чаще. Выброс адреналина происходит при любом сильном волнении или большой физической нагрузке. Адреналин повышает проницаемость клеточных мембран для глюкозы, усиливает распад углеводов (гликогена) и жиров, вызывает сужение сосудов органов брюшной полости, кожи и слизистых оболочек; в меньшей степени сужает сосуды скелетной мускулатуры. Артериальное давление под действием адреналина повышается. Если человек испуган или взволнован, то его выносливость резко повышается.

Норадреналин называют «гормоном ярости», т.к. в результате выброса в кровь норадреналина всегда возникает реакция агрессии, значительно увеличивается мышечная сила. Его секреция и выброс в кровь усиливаются при стрессе, кровотечениях, тяжелой физической работе и других ситуациях, требующих быстрой перестройки организма. Так как норадреналин оказывает сильное сосудосуживающее действие, его выброс в кровь играет ключевую роль в регуляции скорости и объема кровотока.

Дофамин вызывает повышение сердечного выброса, оказывает вазоконстрикторное действие, улучшает кровоток и пр., стимулирует распад гликогена и подавляет утилизацию глюкозы тканями. Дофамин вызывает повышение концентрации глюкозы в крови. Он участвует в регуляции образования гормона роста, в торможении секреции пролактина.

γ-Аминомасляная кислота (ГАМК) — аминокислота, важнейший тормозной нейромедиатор центральной нервной системы человека и других млекопитающих. Аминомасляная кислота является биогенным веществом. Содержится в ЦНС и принимает участие в нейромедиаторных и метаболических процессах в мозге.

30. Окислительное дезаминирование и гидроксилирование биогенных аминов.

Накопление биогенных аминов может отрицательно сказываться на физиологическом статусе и вызывать ряд существенных нарушений функций в организме.

Однако органы и ткани, как и целостный организм, располагают специальными механизмами обезвреживания биогенных аминов, которые в общем виде сводятся к окислительному дезаминированию этих аминов с образованием соответствующих альдегидов и освобождением аммиака:

31. Трансметилирование, метионин и S-аденозилметионин.

Трансметилирование - реакция переноса метильной группы от донора к акцептору

Метионин - незаменимая аминокислота, необходимая для синтеза белков. Мет-тРНКмет участвует в инициации процесса трансляции каждого белка. Как и многие другие аминокислоты, метионин подвергается транс- и дезаминированию. Особая роль метионина заключается в том, что метильная группа этой аминокислоты используется для синтеза целого ряда соединений в реакциях трансметилирования. Основным донором метильной группы является S-аденозилметионин (SAM) - активная форма метионина, который присутствует во всех типах клеток и синтезируется из метионина и АТФ под действием фермента метионин-аденозилтрансферазы

32. Синтез креатина, адреналина, фосфатидилхолина, их биологическая роль.

Креатин необходим для образования в мышцах высокоэнергетического соединения - креатинфосфата.. Участвует в энергетическом обмене в мышечных и нервных клетках.

Адреналин - вырабатывается нейроэндокринными клетками мозгового вещества надпочечников и участвует в реализации состояния, при котором организм мобилизируется для устранения угрозы. Его секреция резко повышается при стрессовых состояниях, пограничных ситуациях, ощущении опасности, при тревоге, страхе, при травмах, ожогах и шоковых состояниях.

+Фосфатидилхолины (лецитины) - наиболее распространённая группа глицерофосфоли-пидов, участвующих в образовании мембран клеток и липопротеинов, в составе которых осуществляется транспорт липидов