Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 7.docx
Скачиваний:
581
Добавлен:
10.02.2015
Размер:
3.02 Mб
Скачать

Экологические факторы: абиотические, биотические, их значение

Среда обитания, кроме того, что она окружает конкретный организм, оказывает на него опре­деленное влияние, как и он на нее. Поэтому тела и явления природы, способные взаимодейство­вать с организмом, называются экологическими факторами. Их делят на две группы: абиотиче­ские и биотические.

К абиотическим факторам относят все физико-химические влияния, способные вызвать ответ­ную реакцию организма. К ним относят климатические (свет, температура, влажность), химиче­ские (химический состав среды обитания), эдафические (типы почв) и другие воздействия.

Светом называется весь диапазон солнечного излучения, который представляет собой поток энергии с длинами волн от 1 до 1000 нм. Далеко не весь свет, излучаемый Солнцем, попадает на поверхность Земли: больше половины его отражает и рассеивает атмосфера. Влияние света, являющегося основным источником энергии на Земле, можно рассматривать с точки зрения его интенсивности, длины волны и фотопериода.

По отношению к интенсивности света растения делятся на светолюбивые, тенелюбивые и те­невыносливые, а животные — на дневных и ночных. Приспособление к улавливанию света у растений выражается в том, что они выносят листья к солнцу и располагают их таким обра­зом, чтобы один не затенял другой (листовая мозаика). Однако даже светолюбивые растения не всегда способны выдерживать слишком яркое Солнце, и поэтому защищаются от него измене­нием положения листьев и хлоропластов в них, усилением опушения листьев, рассеивающего свет и т. д. Тенелюбивым растениям присуще несколько иное соотношение фотосинтетических пигментов, чем у светолюбивых, большее количество хлоропластов и другие особенности, вслед­ствие которых они не только приобретают темно-зеленую окраску, но и более эффективно улав­ливают свет.

Спектр света делится на несколько областей:

  • 10-400 нм — ультрафиолетовая радиация;

  • 400-740 нм — видимый свет;

  • 740-1000 нм — инфракрасное излучение.

Длина волны света важна для протекания важнейших процессов жизнедеятельности. Так, малые дозы ультрафиолетового излучения необходимы для видения многих насекомых, образо­вания витамина D в коже у человека, а большие являются губительными, вызывая образование злокачественных опухолей (рака) кожи при длительном нахождении на открытом солнце. От из­быточного количества ультрафиолета Землю защищает озоновый экран в верхних слоях атмосфе­ры, однако в последние годы его состояние вызывает серьезные опасения вследствие применения различных химических соединений, запусков ракет и т. д.

Видимый свет обеспечивает протекание процесса фотосинтеза и транспирации у растений (от­крывание и закрывание устьиц регулируется в том числе и светом различной длины волны), видение большинства животных и человека, а также является синхронизатором биологических ритмов для обеих групп организмов.

Более длинноволновой диапазон света называют инфракрасным излучением. Это излучение повышает температуру нагреваемого тела и снижает его у испускающего лучи с данной длиной волны. Инфракрасное излучение используют различные холоднокровные животные и некоторые растения, повышая таким образом температуру тела или отдельных его частей. Однако эти же лучи, отражаемые от поверхности Земли и испускаемые животными и растениями, не могут прой­ти через атмосферу, насыщенную углекислым газом, и отражаются обратно, способствуя усугу­блению глобального потепления. Из-за сходства данного явления с процессами, происходящими в закрытом грунте, оно получило название «парникового эффекта».

Фотопериодом называют продолжительность светового дня и ночи, которая имеет суточную и сезонную ритмичность и определяет сроки цветения многих растений и поведение животных вследствие заблаговременного ощущения ими грядущих перемен.

Температура влияет на скорость протекания биохимических реакций, однако значительная часть организмов может существовать только в узком диапазоне температур, поскольку резкие переходы от тепла к холоду и обратно неблагоприятно сказываются на их метаболизме. Исклю­чение составляют, пожалуй, лишь бактерии, споры которых могут выдерживать охлаждение до -200 °С и нагревание до 100 °С.

Температуры, при которых происходят активные физиологические процессы, называются эф­фективными, их значения не выходят за пределы летальных температур. Суммы эффективных температур, или суммы тепла, являются величиной постоянной для каждого вида и определяют границы его распространения. Например, ранние сорта картофеля можно выращивать и в Мага­данской области, а подсолнечник — нет.

По отношению к температуре все организмы делят на теплолюбивые (термофилы) и холодолюбивые (криофилы). К термофилам относятся бактерии, растения и животные. Так, некото­рые виды цианобактерий обитают в геотермальных источниках на Камчатке при температурах 75-80°С, кактусы и верблюжья колючка переносят нагревание воздуха до 70 °С, а целый ряд пу­стынных видов кузнечиков, бабочек и пресмыкающихся предпочитают температуру около 40°С. Вместе с тем какао погибает при снижении температуры до +8°С.

Холодолюбивые виды могут осуществлять свою жизнедеятельность при 8-10 °С, однако редко выживают при повышении температуры. Семена растений, споры бактерий и грибов, коловратки и некоторые круглые черви выдерживают замораживание свыше -270°С без особого ущерба для последующей жизнедеятельности, а в активном состоянии при отрицательных температурах су­ществует ряд видов животных (пингвины) и растений (водоросли, голосеменные).

Растения не способны поддерживать постоянную температуру тела, но, в отличие от живот­ных, они вынуждены приспосабливаться к ее действию. Как это ни парадоксально, но приспосо­бления к перенесению высоких и низких температур у растений во многом схожи: накопление в цитоплазме растворимых сахаров, аминокислот и других соединений, связывающих воду, повы­шение интенсивности дыхания. Многие арктические виды отличаются компактными размерами, тогда как их репродуктивные органы относительно велики. Растения южных широт могут иметь очень мелкие листья или вовсе утрачивают их (молочаи, кактусы), при этом функцию фотосин­теза выполняет стебель.

У животных реакции на температуру окружающей среды направлены на регулирование тепло­отдачи. Тех, которые не способны поддерживать постоянную температуру тела, относят к пойкилотермным, а тех, у которых она постоянна, — к гомойотермным.

К пойкилотермным животным относятся все беспозвоночные, рыбы, земноводные и пресмы­кающиеся. Они отличаются более низкой интенсивностью метаболизма. Повышение температуры их тела обеспечивается за счет поглощения теплового излучения солнечного света и нагретых предметов (земноводные, пресмыкающиеся), работы мышц (насекомые в полете), общественной жизни (термиты, муравьи, пчелы), интенсивности испарения влаги с поверхности тела и т. д. При существенном снижении температуры пойкилотермные животные впадают в состояние оцепене­ния (анабиоз).

Гомойотермные животные (птицы и млекопитающие) характеризуются более высоким уров­нем обменных процессов, которые и сопровождаются выделением тепла. При низких температу­рах у гомойотермных животных повышается интенсивность биохимических реакций и возрастает количество тепла, которое распределяется по телу. Высокие температуры сопровождаются у них усилением потоотделения и даже излучением тепла. Важную роль в защите тела от резких пере­падов температур играют перьевой или волосяной покровы, а также подкожная жировая клет­чатка, выполняющие термоизоляционную функцию. Однако несмотря на столь сложную систему терморегуляции, резервы организма гомойотермных животных не безграничны, и при слишком низких или высоких температурах они погибают.

Вода является необходимым компонентом клетки, однако ее количество и доступность в опре­деленных местах обитания может ограничивать распространение организмов.

По степени потребности в воде растения делят на три основные экологические группы: ксерофиты, мезофиты и гигрофиты.

Ксерофиты — это растения засушливых мест обитания, для них характерны удлинение корней, утолщение кутикулы, опушение листьев, уменьшение размеров листьев, а ино­гда и их сбрасывание. К ним относятся кактусы, толстянки, верблюжья колючка — саксаул и др.

Мезофиты занимают умеренно увлажненные участки земной поверхности, к ним относятся пшеница, горох и др. Некоторые представители этой экологической группы при наступлении не­благоприятных условий способны быстро завершать вегетационный период и переживать засуху в виде семян, луковиц, клубней или корневищ (тюльпан, ландыш, пролески).

Гигрофиты приспособились к обитанию в условиях избыточного увлажнения. К ним отно­сятся кувшинка, тростник, рогоз и др. Специальные приспособления для защиты от испарения отсутствуют, однако избыток влаги в среде, который может вызывать недостаток кислорода, спо­собствует развитию у гигрофитов воздухоносных полостей.

Животные, как и растения, должны восполнять потерю воды, для чего они пьют ее на водопо­ях, часто расположенных на расстоянии десятков километров, извлекают из пищи или запасают. В случае полного отсутствия воды некоторые животные способны впадать в спячку.

Химический состав среды играет в жизни организмов не меньшую роль, чем другие факторы. Так, снижение содержания кислорода в атмосфере может привести к гибели значительного числа видов растений и животных, например, человека. Поэтому в зависимости от потребности в кисло­роде все организмы делятся на аэробов и анаэробов. Кислород необходим даже корням растений, надземная часть которых выделяет его в процессе фотосинтеза. Анаэробами же являются многие паразитические организмы, в частности печеночный сосальщик, бычий цепень и др.

Недостаток минеральных солей в почве провоцирует их недостаток в организме, вследствие чего нарушаются процессы жизнедеятельности и, в конечном итоге, отклонение от нормы темпов роста и развития. Например, недостаток кальция у человека может привести к увеличению ломко­сти костей, а у растений — уменьшению размеров листьев, отмиранию корней и верхушек и т. д.

В случае избытка солей водный обмен растений и животных затрудняется, к тому же многие ионы токсичны для организма. Поэтому биоразнообразие флоры и фауны солончаков намного уступает числу видов в экосистемах, не обремененных столь высокими концентрациями солей. Однако обитающие в этих местах растения приспособились к использованию такого количества солей, которое необходимо им для протекания процессов жизнедеятельности, а избыток солей от­кладывается в вакуолях или выделяется наружу. Растения и животные, приспособившиеся жить в условиях повышенного засоления, называются галофилами. К ним относятся солерос, тамарикс, кораллы, многие морские беспозвоночные, бактерии и др.

Кислотность среды также является существенным фактором среды, поскольку многие процес­сы обмена веществ с окружающей средой происходят в ограниченной зоне рН, а в почве отражает­ся также на составе и деятельности микрофлоры, обеспечивающей жизнедеятельность растений. Так, при низких значениях рН снижается, например, поступление азота из почвы в растения, тогда как доступность кальция, наоборот, повышается. Растения, приспособившиеся к обитанию в условиях повышенной кислотности, называются ацидофилами (мох кукушкин лен, некоторые хвощи и осоки), пониженной — базофилами (тысячелистник, ольха, мятлик), а растения почв с нейтральной реакцией — нейтрофилами (земляника, марьянник, кислица).

Естественными источниками ионизирующего излучения являются космические лучи, почти полностью задерживаемые верхними слоями атмосферы, а также излучение ряда химических элементов (изотопов урана, радия, калия и др.) и продуктов их распада. В последние десятилетия появились искусственные источники ионизирующего излучения — реакторы атомных электро­станций, ледоколов и подводных лодок, ракетные боеголовки и ядерные бомбы, рентгеновские аппараты в медицинских учреждениях, бытовые приборы и др. Небольшие дозы ионизирующего излучения, не превышающие значения природного фона, могут повышать всхожесть семян и ско­рость роста растений, а их увеличение вызывает мутации, нарушения обмена веществ и деления клеток, роста и развития организма, и может привести к гибели.

Определенное влияние на живые организмы оказывают также рельеф местности, атмосферное давление, атмосферное электричество, пожары, магнитное поле Земли, шум и другие факторы.

Биотическими факторами среды называют совокупность живых организмов, оказывающих влияние на другие живые существа своей жизнедеятельностью. Одним из биотических факторов является также влияние человека. Определяющими в этом отношении являются видовое разно­образие сообщества и численность популяций, образующих его. Живые организмы поселяются друг с другом не случайно, а образуют определенные сообщества, приспособленные к совместному обитанию. По направлению действия на организм все взаимоотношения между организмами в со­обществах могут подразделяться на симбиоз, антибиоз и нейтрализм.

Под симбиозом понимают любой вид взаимоотношений, при котором оба партнера или хотя бы один из них извлекает пользу. Формами симбиоза являются мутуализм, кооперация, коммен­сализм и даже паразитизм.

Мутуализм — это взаимовыгодное сожительство, при котором присутствие партнера является обязательным условием существования каждого из организмов, например сожительство корней растений с клубеньковыми бактериями и грибами.

Кооперацией называется форма симбиоза, при которой сожительство партнеров приносит обо­им очевидную пользу, однако их связь необязательна, как между раком-отшельником и актинией.

Комменсализм — это форма взаимоотношений, при которой один из партнеров извлекает из них пользу, а другому это безразлично (эпифитные и древесные растения).

Паразитизм — использование одним организмом другого в качестве места обитания и по­стоянного источника питания, причем организму-хозяину наносится очевидный ущерб (острица детская и человек).

К антибиозу относят любой вид взаимоотношений, при котором обе взаимодействующие по­пуляции или хотя бы одна из них испытывает отрицательное влияние. Формами антибиоза явля­ются хищничество, растительноядность, конкуренция, аменсализм и аллелопатия. К нему можно причислить также и паразитизм.

Хищничество заключается в умерщвлении одними животными пойманных особей других ви­дов. Хищниками являются не только животные, но и насекомоядные растения, некоторые грибы.

Взаимоотношения между особями одного или разных видов, соревнующихся за одни и те же ресурсы, имеющиеся в ограниченном количестве, называют конкуренцией. Например, грибы мо­гут ограничивать рост бактерий путем выделения антибиотиков, а животные — даже нападать друг на друга.

Аменсализм фактически является крайним случаем конкуренции, если один из конкурентов намного сильнее другого. Например, большое дерево затеняет траву под его кроной, при этом оно практически не ощущает сопротивления.

Аллелопатия в широком значении этого термина подразумевает взаимодействие растений при помощи биологически активных веществ, однако исходно под ней подразумевалось только пода­вление одними растениями других. Примерами аллелопатии является подавление роста других растений корневыми выделениями пырея.

Нейтрализмом называется любой вид взаимоотношений, при котором совместно обитающие на одной территории организмы не оказывают друг на друга прямого влияния, как, например, дуб и лось в дубраве.

Закон оптимума. Несмотря на то, что ряд экологических факторов практически неизменен в течение длительного времени, как, например, сила земного тяготения, состав и свойства атмос­феры, океанических вод и т. п., большинство других факторов изменяются как во времени, так и в пространстве. Эти изменения могут быть регулярно-периодическими (время суток, приливы и отливы, сезоны года), нерегулярными (ураганы, цунами, землетрясения) или направленными (изменения климата, загрязнение атмосферы).

Отдельные организмы, как и надорганизменные системы, вынуждены приспосабливаться к происходящим изменениям, однако резервы их адаптации сформировались в процессе эволю­ции и не безграничны, поэтому для каждого организма, популяции и экосистемы существует диа­пазон условий среды — диапазон устойчивости (выживаемости), в рамках которого происходит жизнедеятельность объектов. За границами этого диапазона — границами выживаемости — жи­вая система либо сразу погибает, либо дает семена, споры и т. д., либо переходит во временное состояние покоя (луковицы, клубни и другие запасающие органы растений, анабиоз у животных и т. д.).

В пределах диапазона устойчивости скорость роста и развития организмов не одинакова. На­пример, продолжительность жизненного цикла плодовой мушки дрозофилы при +24 °С составляет в среднем две недели, а при +17°С — уже около трех. Такие значения экологического фактора, при которых организмы и популяции достигают наилучшего развития и максимальной продук­тивности, называются оптимальными. Любые отклонения от этого оптимума вызывают угнете­ние процессов жизнедеятельности.

Выявление этих закономерностей позволило сформулировать закон оптимума: любой эколо­гический фактор имеет определенные пределы положительного влияния на организмы.

Поиск оптимальных значений экологических факторов имеет важное прикладное значение для сельского и лесного хозяйств, а также некоторых отраслей медицины, поскольку только при данном условии реализуется генетически запрограммированный потенциал продуктивности дан­ного вида, а также возможно сохранение здоровья человека.

Закон минимума. Оптимальное соотношение факторов среды встречается в природе довольно редко, и те факторы, которые в наибольшей степени вызывают нарушения роста и развития ор­ганизма, называются ограничивающими. Именно к ним организм вырабатывает приспособления в первую очередь.

Несмотря на то, что природа ограничивающих факторов неодинакова: дефицит химического элемента в почве, недостаток тепла или влаги, биотические отношения (занятие территории более сильным конкурентом, недостаток опылителей для растений), они могут в существенной мере препятствовать процветанию вида. Так, ареал вида значительно ограничивается двумя показате­лями: температурным порогом развития и суммой эффективных температур.

Выявление ограничивающих факторов очень важно в практическом отношении. Так, многие культурные растения весьма требовательны к кислотности почвы, поэтому известкование почвы позволяет существенно повысить их продуктивность.

Изучая влияние дефицита элементов минерального питания на растения, немецкий физиолог Ю. Либих сформулировал закон минимума (1840):

Наибольшее влияние на рост и развитие организма оказывает тот фактор, которого в дан­ный момент не достает в наибольшей степени.

Однако не только недостаток какого-либо фактора может приводить к нарушению жизнедея­тельности организма, но и его избыток, поэтому в настоящее время более широкое распростране­ние получил закон ограничивающего фактора:

Наиболее значим тот фактор, который больше всего отклоняется от оптимальных для организма значений; именно он определяет в данный момент выживание особей.

Экологические факторы действуют на организмы не по отдельности, а в тесном взаимодей­ствии друг с другом. Избыточные значения одних из них могут снижать неблагоприятные послед­ствия недостатка других, как, например, в случае неблагоприятного фотопериода он может быть заменен повышенными температурами. Это явление называется компенсацией.

Биологические ритмы. Существование ритмических колебаний ряда факторов окружающей среды вынуждает живые организмы согласовывать свою жизнедеятельность с периодами дей­ствия наиболее благоприятных значений этих факторов. Такие периодически повторяющиеся изменения интенсивности и направления биологических процессов называются биологическими ритмами.

Биологические ритмы чаще всего наследственно закреплены, однако некоторые из них кор­ректируются изменениями факторов среды. Одним из основных периодически действующих на организмы и экосистемы факторов является свет, поскольку он не только действует на организмы с момента их возникновения, но и наиболее устойчив в своей динамике, автономен и не подвер­жен другим влияниям.

Суточные ритмы свойственны большинству видов растений и животных. Сигнальным факто­ром начала и прекращения активности для них служит режим освещения. У многих видов отме­чается смена суточных ритмов в течение сезона. У песчанок в середине лета наблюдается два пика активности в течение суток, а ранней весной и поздней осенью — по одному.

Циркадианные (циркадные, околосуточные) ритмы — это повторяющиеся изменения интен­сивности и направленности процессов жизнедеятельности с периодом от 20 до 28 ч. Часто относят также и суточные ритмы. К ним относят суточные циклы активности различных органов и систем органов организма человека, открывание и закрывание цветков ряда растений.

В другую очень важную группу биологических ритмов, имеющих огромное значение для выс­ших и низших организмов, входят сезонные (околосезонные), годичные (цирканнуальные, цир- канные) ритмы, обусловленные вращением Земли вокруг Солнца.

Фотопериодизм. Реакция организмов на суточный ритм освещения (соотношение продолжи­тельности дня и ночи), которая выражается в изменении интенсивности процессов роста и разви­тия, называется фотопериодизмом. Она присуща как животным, так и растениям.

У растений фотопериодизм является приспособлением к комплексу сезонных изменений внешних условий. Например, растения экваториальной зоны и тропиков, где день и ночь имеют примерно равную продолжительность, зацветают на коротком световом дне, тогда как растения умеренного климата, лето которого характеризуется длинным световым днем (свыше 12 ч), осу­ществляют этот акт только на длинном дне. Уменьшение же продолжительности светового дня для них означает приближение зимы, и они прекращают рост, переходя к цветению и плодоно­шению, накоплению запасных веществ.

У животных фотопериодизм также связан с изменениями процессов жизнедеятельности, на­пример, наступлением и прекращением брачного периода, линьками, сезонными миграциями, впадением в спячку и т. д. Он также генетически закреплен, однако во многих случаях происхо­дит согласование его с суточным ритмом освещенности.

Антропогенный фактор

Антропогенным фактором называют совокупность последствий хозяйственной деятельности человека для окружающей среды. Она заключается в эксплуатации природных ресурсов, в том числе исчерпаемых (добыче газа, нефти, руд и т. д.), загрязнении воздуха, воды и почвы, ис­треблении значительного количества видов животных и растений, что ведет к необратимому на­рушению экологического равновесия. В большинстве случаев антропогенный фактор не носит систематического характера, поэтому приспособление организмов к его действию существенно затруднено.

7.2. Экосистема (биогеоценоз), ее компоненты: продуценты, консументы, редуценты, их роль. Видовая и пространственная структура экосистемы. Цепи и сети питания, их звенья. Типы пищевых цепей. Составление схем передачи веществ и энергии (цепей питания). Правило экологической пирамиды. Структура и динамика численности популяций.

Экосистема (биогеоценоз), ее компоненты: продуценты, консументы, редуценты, их роль

Совокупность живых организмов, тесно взаимодействующих между собой и со средой их оби­тания, образует экосистему. Границы экосистемы достаточно условны, поэтому к экосистемам относят и нору сурка со всеми ее обитателями (сожителями, паразитами и т. д.), и озеро Байкал, и биосферу в целом. Элементарной экосистемой является биогеоценоз, поэтому далее эти понятия будут рассматриваться как тождественные.

Биогеоценоз — это устойчивый, достаточно однородный комплекс взаимосвязанных видов живых организмов и компонентов окружающей среды.

Примерами биогеоценозов являются лиственный лес, сосновый бор, заливной луг, озеро, боло­то и др. Согласно учению о биогеоценозах, разработанному академиком В. Н. Сукачевым (1940), свойствами биогеоценоза являются целостность, открытость, саморегуляция и самовоспроизве­дение.

В биогеоценозе выделяют биотический и абиотический компоненты (биоценоз и биотоп со­ответственно).

Биоценозом называют совокупность популяций живых организмов, населяющих участок суши или водоема. Он характеризуется видовым разнообразием, плотностью популяций, биомассой и продуктивностью. Сам участок водоема или суши с одинаковыми условиями рельефа, климата и прочими абиотическими факторами, занятый определенным биоценозом — это биотоп.

Целостность биогеоценозов поддерживается за счет потока энергии, который проходит через него. Поскольку основным поставщиком энергии на Землю является солнечный свет, то улавлива­ют его и переводят в доступную для других организмов форму органических веществ автотрофы, тогда как гетеротрофы используют готовые органические вещества.

С экологической точки зрения в составе биогеоценозов выделяют три основные группы ор­ганизмов: продуценты, консументы и редуценты.

Продуценты — это автотрофные организмы, синтезирующие органические вещества из неорганических. Через их посредство происходит при­ток в экосистему энергии солнечного света или химических связей неорганических соединений. Основными продуцентами большинства экосистем являются зеленые растения, хотя со счетов нельзя сбрасывать и фото-, и хемосинтезирующие бактерии, являющиеся основой некоторых во­дных экосистем.

Консументы, являющиеся гетеротрофами, потребляют органические вещества, синтезирован­ные автотрофами в процессе жизнедеятельности. К ним относят растительноядных и плотоядных животных, а также грибы. Консументы могут быть представлены целым рядом видов, каждый из которых является пищей для последующего. Например, растительноядных животных (насеко­мых) рассматривают в качестве консументов 1-го порядка, насекомоядных птиц — консументов 2-го порядка, а хищных птиц — консументов 3-го порядка.

Наличие консументов в биогеоценозе не является обязательным условием его существования, поскольку отмершие остатки все равно будут утилизированы редуцентами. Таковы некоторые глубоководные экосистемы, в которых продуцентами являются хемосинтезирующие бактерии.

Редуценты также относятся к гетеротрофам, поскольку они используют готовые органические вещества, разлагая их до неорганических, вновь вовлекаемых в биотический круговорот веществ продуцентами. Редуцентами являются бактерии, грибы и некоторые животные, например дожде­вой червь.

Таким образом, благодаря существованию этих трех групп организмов в биогеоценозах осу­ществляется круговорот веществ, тогда как большая часть энергии рассеивается.