Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты.docx
Скачиваний:
17
Добавлен:
10.02.2015
Размер:
574.55 Кб
Скачать

23 Билет

Иерархия классов. Наследование. Наследование конструкторов.

Иерархия классов

Управлять большим количеством разрозненных классов довольно сложно. С этой проблемой можно справиться путем упорядочивания и ранжирования классов, то есть объединяя общие для нескольких классов свойства в одном классе и используя его в качестве базового. Эту возможность предоставляет механизм наследования.

Наследование применяется для следующих взаимосвязанных целей:

1)исключения из программы повторяющихся фрагментов кода;

2)упрощения модификации программы;

3)упрощения создания новых программ на основе существующих.

Наследование является единственной возможностью использовать объекты, исходный код которых недоступен, но в которые требуется внести изменения.

Кроме механизма наследования в данном разделе мы рассмотрим такие важные понятия ООП как полиморфизм и инкапсуляцию (см. лекцию 2), которые также принимают участие в формировании иерархии классов.

Наследование

Класс в С# может иметь произвольное количество потомков и только одного предка. При описании класса имя его предка записывается в заголовке класса после двоеточия. Если имя предка не указано, предком считается базовый класс всей иерархии System.Object. Синтаксис наследования:

[атрибуты] [спецификаторы] class имя_класса [: предки]

{ тело_класса}

Обратите внимание на то, что слово «предки» присутствует в описании класса во множественном числе, хотя класс может иметь только одного предка. Это связано с тем, что класс наряду с единственным предком-классом может наследовать интерфейсы (специальный вид классов, не имеющих реализации). Интерфейсы будут рассмотрены чуть позже.

Класс, который наследуется, называется базовым. Класс, который наследует базовый класс, называется производным. Производный класс, наследует все переменные, методы, свойства, операторы и индексаторы, определенные в базовом классе, кроме того в производный класс могут быть добавлены уникальные элементы или переопределены существующие.

Наследование конструкторов

В иерархии классов как базовые, так и производные классы могут иметь собственные конструкторы. При этом конструктор базового класса создает часть объекта, соответствующую базовому классу, а конструктор производного класса — часть объекта, соответствующую производному классу. Так как базовый класс не имеет доступа к элементам производного класса, то их конструкторы должны быть раздельными.

В предыдущем примере классы создавались за счет автоматического вызова средствами С# конструктора по умолчанию.

В данном случае конструктор определяется только в производном классе, поэтому часть объекта, соответствующая базовому классу, создается автоматически с помощью конструктора по умолчанию, а часть объекта, соответствующая производному классу, создается собственным конструктором.

Если же конструкторы определены и в базовом, и в производном классе, то процесс создания объектов несколько усложняется, т.к. должны выполниться конструкторы обоих классов. В этом случае используется ключевое слово base, которое имеет два назначения:

1) позволяет вызвать конструктор базового класса:

Производный класс может вызывать конструктор, определенный в его базовом классе, используя расширенную форму объявления конструктора и ключевое слово base.

2) позволяет получить доступ к члену базового класса, который скрыт "за" членом производного класса.

В этом случае ключевое слово base действует подобно ссылке this, за исключением того, что ссылка base всегда указывает на базовый класс для производного класса, в котором она используется. В этом случае формат ее записи выглядит следующим образом:

base.член_класса

Здесь в качестве элемента член_класса можно указывать либо метод, либо поле экземпляра. Эта форма ссылки base наиболее применима в тех случаях, когда имя члена в производном классе скрывает член с таким же именем в базовом классе.

БИЛЕТ 24

Переменные базового класса и производного класса. Виртуальные методы.

Переменные базового класса и производного класса.

С# является языком со строгой типизацией, в нем требуется строгое соблюдение совместимости типов с учетом стандартных преобразований типов. Из чего следует, что переменная одного типа обычно не может ссылаться на объект другого ссылочного типа. За одним небольшим исключением – ссылочная переменная базового класса может ссылаться на объект любого производного класса.

Ошибка возникнет и при попытке через объект point2 обратиться к методу Show. Например, point2.Show(). В этом случае компилятор не сможет определить, какой метод Show вызвать – для базового или для производного класса. Для решения данной проблемы можно воспользоваться таким понятием как полиморфизм, который основывается на механизме виртуальных методов.

Виртуальные методы

Виртуальный метод – это метод, который объявлен в базовом классе с использованием ключевого слова virtual, и затем переопределен в производном классе с помощью ключевого слова override. При этом если реализована многоуровневая иерархия классов, то каждый производный класс может иметь свою собственную версию виртуального метода. Этот факт особенно полезен в случае, когда доступ к объекту производного класса осуществляется через ссылочную переменную базового класса. В этой ситуации С# сам выбирает какую версию виртуального метода нужно вызвать. Этот выбор производится по типу объекта, на которую ссылается данная ссылка.

Таким образом, благодаря полиморфизму через ссылочную переменную возможно обращаться к объектам разного типа, а также с помощью одного и того же имени выполнять различные действия.

БИЛЕТ 25

Абстрактные методы и классы

Иногда полезно создать базовый класс, определяющий только своего рода "пустой бланк", который унаследуют все производные классы, причем каждый из них заполнит этот "бланк" собственной информацией. Такой класс определяет структуру методов, которые производные классы должны реализовать, но сам при этом не обеспечивает реализации этих методов. Подобная ситуация может возникнуть, когда базовый класс попросту не в состоянии реализовать метод. В данной ситуации разрабатываются абстрактные методы или целые абстрактные классы.

Абстрактный метод создается с помощью модификатора abstract. Он не имеет тела и, следовательно, не реализуется базовым классом, а производные классы должны его обязательно переопределить. Абстрактный метод автоматически является виртуальным, однако использовать спецификатор virtual не нужно. Более того, если вы попытаетесь использовать два спецификатора одновременно, abstract и virtual, то компилятор выдаст сообщение об ошибке.

Если класс содержит один или несколько абстрактных классов, то его также нужно объявить как абстрактный, используя спецификатор abstract перед class. Поскольку абстрактный класс полностью не реализован, то невозможно создать экземпляр класса с помощью операции new.

Если производный класс наследует абстрактный, то он должен полностью переопределить все абстрактные методы базового класса или также быть объявлен как абстрактный. Таким образом, спецификатор abstract наследуется до тех пор, пока в производном классе не будут реализованы все абстрактные методы.

Запрет наследования

В С# есть ключевое слово sealed, позволяющее описать класс, от которого запрещено наследование. Например:

sealed class Demo { … }

class newDemo: Demo { … } // ошибка

БИЛЕТ 26

Интерфейсы.

В объектно-ориентированном программировании иногда требуется определить, что класс должен делать, а не как он будет это делать. Такой подход может быть реализован с помощью абстрактного класса, при этом в абстрактном классе часть методов может быть реализована, часть нет. Кроме этого в С# предусмотрена возможность полностью отделить структуру класса от его реализации. Это делается с помощью интерфейса.

Интерфейс – это «крайний случай» абстрактного класса, в котором не предусмотрена ни одна реализация члена класса. Таким образом, интерфейс описывает функциональность классов, но не определяет способа ее реализации. Каждый класс, наследуя интерфейс, может реализовать его элементы по-своему. Так достигается полиморфизм – объекты разных классов по-разному реагируют на вызовы одного и того же метода.

Синтаксис интерфейса:

[атрибуты] [спецификаторы] interface имя_интерфейса : [предки]

{

//объявление функциональных членов интерфейса без реализации

}

Для интерфейса могут быть указаны спецификаторы new, public, internal и private. Спецификатор new применяется для вложенных интерфейсов и имеет такой же смысл, как и соответствующий спецификатор метода класса. По умолчанию интерфейс доступен только из сборки, в которой он описан (internal).

Все функциональные члены интерфейса по умолчанию являются открытыми (public) и абстрактными (abstract), поэтому при описании метода указывается только типа возвращаемого им значения и сигнатуры.

В качестве функциональных членов в интерфейсе можно объявлять сигнатуры методов, свойств, индексаторов и событий (для Windows-приложений). Интерфейсы не могут содержать члены данных, конструкторы, деструкторы или операторные методы (методы, переопределяющие операции). Ни один член интерфейса не может быть объявлен статическим.

Напомним, что класс может наследовать один базовый класс и несколько интерфейсов. Класс, наследующий интерфейс, должен реализовать его в полном объеме. Т.к. функциональные члены, объявленные внутри интерфейса, являются открытыми, то их реализация также должна быть открытой. Кроме того, сигнатура функционального члена в реализации должна в точности совпадать с сигнатурой, заданной в определении интерфейса.

Обратите внимание, что в интерфейсе IDemo было объявлено свойство Х, доступное только для чтения. Наследуя интерфейс IDemo, класс DemoPoint определил реализацию данного свойства. Класс DemoShape, наследуя класс DemoPoint и IDemo, не предложил собственной реализации свойства Х, поэтому при обращении к объекту типа DemoShape вызывается реализация данного свойства, определенная в базовом классе.

БИЛЕТ 27

Стандартные интерфейсы .Net

В библиотеке классов .Net определено множество стандартных интерфейсов, задающих желаемую функциональность объектов. Например, интерфейс IComparable задает метод сравнения объектов по принципу больше и меньше, что позволяет переопределить соответствующие операции в рамках класса, наследующего интерфейс IComparable. Реализация интерфейсов IEnumerable и IEnumerator дает возможность просматривать содержимое объекта с помощью оператора foreach.

Можно создавать собственные классы, реализующие стандартные интерфейсы, что позволит использовать объекты этих классов стандартными способами.

Более подробно рассмотрим стандартный интерфейс IComparable.

Интерфейс IComparable определен в пространстве имен System и содержит единственный метод CompareTo, возвращающий результат сравнения двух объектов – текущего и переданного ему в качестве параметра:

interface IComparable

{

int CompareTo(object obj);

}

Реализация данного метода должна возвращать:

  1. 0 – если текущий объект и параметр равны;

  2. отрицательное число, если текущий объект меньше параметра;

  3. положительное число, если текущий объект больше параметра.

В качестве примера рассмотрим реализацию классом DemoPoint стандартного интерфейса IComparable.

Задание. Измените метод CompareTo так, чтобы метод Sort сортировал массив точек по убыванию расстояния между точкой и началом координат.

Обратите внимание на то, что во время реализации метода CompareTo в качестве параметра передавалась ссылка на объект типа object. Напомним, что класс object является корневым классом для всех остальных в С#. Поэтому он может ссылаться на объект любого типа. Но чтобы потом получить доступ к членам объекта произвольного класса, нужно выполнить приведение типов.

Используя собственную реализацию метода CompareTo можно перегрузить операции отношения. Напомним, что операции отношения должны перегружаться парами: < и >, <= и >=, == и !=.

БИЛЕТ 28

Структуры.

Классы являются статичными данными. Это означает, что к экземплярам классов можно обратиться только через ссылку.

В отличие от классов структуры являются размерным классом, поэтому экземпляр структуры хранит значение своих элементов, а не ссылки на них, и располагается в стеке данных, а не в куче.

Структура не может участвовать в иерархии наследования (нет предков).

Также в структуре запрещено определять конструктор по умолчанию, поскольку он определен неявно и присваивает всем своим элементам значение по

[атритбут][спецификатор] struct имя_str: [интерфейс]

{

тело структуры

}

Спецификаторы структуры имеют тот же смысл, что и для класса. В отличие от спецификаторов доступа используются public, internal и private.

Интерфейсы, реализуемые структурой, перечисляются через запятую.

Тело структуры может содержать: константы, поля, конструкторы, методы, свойства, индексаторы, операторные методы, вложенные типы и события.

При описании структуры задавать значение по умолчанию можно лишь для статических полей, остальным полям автоматически будут присвоены нули или поле для ссылочных типов.

Параметр this интерпретирует как значение, поэтому его можно использовать для ссылок, но не для присваивания.

Так как структуры не могут участвовать в иерархии, то для ее членов недопустимо использовать спецификаторы protected и protected internal. Методы структур не могут быть абстрактными и виртуальными. А переопределяться могут только те методы, которые унаследованы от базового класса object.

БИЛЕТ 29

Классификация ИС.

Информационная система (ИС) в целом - автоматизированная система, предназначенная для организации, хранения, пополнения, поддержки и представления пользователям информации в соответствии с их запросами.

Классификация по архитектуре По степени распределённости:

  • настольные (desktop), или локальные ИС, в которых все компоненты (БД, СУБД, клиентские приложения) находятся на одном компьютере;

  • распределённые (distributed) ИС, в которых компоненты распределены по нескольким компьютерам.

Распределённые ИС разделяют на:

  • файл-серверные ИС (ИС с архитектурой «файл-сервер»). В файл-серверных ИС база данных находится на файловом сервере, а СУБД и клиентские приложения находятся на рабочих станциях.

  • клиент-серверные ИС (ИС с архитектурой «клиент-сервер»). В клиент-серверных ИС база данных и СУБД находятся на сервере, а на рабочих станциях находятся клиентские приложения.

Клиент-серверные ИС разделяют на:

  • В двухзвенных (англ. two-tier) ИС всего два типа «звеньев»: сервер баз данных, на котором находятся БД и СУБД,и рабочие станции, на которых находятся клиентские приложения. Клиентские приложения обращаются к СУБД напрямую.

  • В многозвенных (англ. multi-tier) ИС добавляются промежуточные «звенья»: серверы приложений (application servers). Пользовательские клиентские приложения не обращаются к СУБД напрямую, они взаимодействуют с промежуточными звеньями. Типичный пример применения многозвенности — современные веб-приложения, использующие базы данных. В таких приложениях помимо звена СУБД и клиентского звена, выполняющегося в веб-браузере, имеется как минимум одно промежуточное звено — веб-сервер с соответствующим серверным программным обеспечением.

Классификация по степени автоматизации

  • автоматизированные: информационные системы, в которых автоматизация может быть неполной (то есть требуется постоянное вмешательство персонала);

  • автоматические: информационные системы, в которых автоматизация является полной, то есть вмешательство персонала не требуется или требуется только эпизодически.

Классификация по охвату задач (масштабности)

  • Персональная ИС предназначена для решения некоторого круга задач одного человека.

  • Групповая ИС ориентирована на коллективное использование информации членами рабочей группы или подразделения.

  • Корпоративная ИС в идеале охватывает все информационные процессы целого предприятия, достигая их полной согласованности, безызбыточности и прозрачности. Такие системы иногда называют системами комплексной автоматизации предприятия.

Классификация по характеру обработки данных

  • информационно-справочные, или информационно-поисковые ИС, в которых нет сложных алгоритмов обработки данных, а целью системы является поиск и выдача информации в удобном виде;

  • ИС обработки данных, или решающие ИС, в которых данные подвергаются обработке по сложным алгоритмам. К таким системам в первую очередь относят автоматизированные системы управления и системы поддержки принятия решений.

Классификация по сфере применения

Поскольку ИС создаются для удовлетворения информационных потребностей в рамках конкретной предметной области, то каждой предметной области (сфере применения) соответствует свой тип ИС.

  • Экономическая информационная система — информационная система, предназначенная для выполнения функций управления на предприятии.

  • Медицинская информационная система — информационная система, предназначенная для использования в лечебном или лечебно-профилактическом учреждении.

  • Географическая информационная система — информационная система, обеспечивающая сбор, хранение, обработку, доступ, отображение и распространение пространственно-координированных данных (пространственных данных).