Добавил:
Developer Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Электроника пособие

.pdf
Скачиваний:
353
Добавлен:
25.06.2022
Размер:
1.53 Mб
Скачать

ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Ордена Трудового Красного Знамени федеральное государственное бюджетное образовательное учреждение высшего образования

Московский технический университет связи и информатики

Каф. электроники В.П.Власов, В.Н.Каравашкина

ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОНИКИ

УЧЕБНОЕ ПОСОБИЕ

Москва 2016

ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Ордена Трудового Красного Знамени федеральное государственное бюджетное образовательное учреждение высшего образования

Московский технический университет связи и информатики

В.П.Власов, В.Н.Каравашкина

ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОНИКИ

УЧЕБНОЕ ПОСОБИЕ

для всех технических направлений

Москва 2016

1

УДК 621.38

Власов В.П., Каравашкина В.Н. Физические основы электроники: Учебное пособие / МТУСИ. – М., 2016. - 68 с.

Данное учебное пособие содержит общие сведения об электрических свойствах веществ и контактов различных материалов, используемых в электронике, описание принципов работы и характеристик структур на их основе, а также основные принципы моделирования электронных элементов.

Настоящее пособие полезно для подготовки бакалавров всех технических направлений, проходящих обучение в МТУСИ.

Ил. 59, список лит. 6 назв.

Издание утверждено советом факультета РиТ. Протокол № 7 от 15.03.2016.

Рецензенты: Т.Б. Асеева, к.т.н., доцент (МТУСИ)

В.Н. Нефедов, д.т.н., профессор (НИУ ВШЭ)

© Московский технический университет связи и информатики, 2016

2

CОДЕРЖАНИЕ

ВВЕДЕНИЕ………………………………………………………………………………………. 5

1.ОБЩАЯ ХАРАКТЕРИСТИКА ВЕЩЕСТВ В ЭЛЕКТРОНИКЕ……………………….…. 6

1.1.Электрические свойства веществ. Полупроводники…………………………….. 6

1.2.Электрические заряды в полупроводниках……………………………………….. 7

1.3.Энергетические диаграммы………………………………………………………… 9

1.4.Электропроводность полупроводников…………………………………………… 11

1.5.Токи в полупроводниках……………………………………………………….…… 12

1.6.Особенности примесных полупроводников………………………………………. 13

1.7.Расчёт концентрации подвижных носителей заряда……………………………… 16

2.ОБЩИЕ СВОЙСТВА КОНТАКТОВ ВЕЩЕСТВ В ЭЛЕКТРОНИКЕ…………………….17

2.1.Контакты и структуры в электронике……………………………………………….17

2.2.Контактная разность потенциалов…………………………………………………..18

2.3.Собственные токи в контактах……………………………………………………….19

2.4.Электроёмкость контактов…………………………………………………………...20

2.5.Электрический и тепловой пробой в контактах…………………………………….21

3.КОНТАКТ МЕТАЛЛ – ПОЛУПРОВОДНИК. ДИОДЫ ШОТКИ……………………….… 21

3.1.Основные свойства металло-полупроводниковых контактов……………………. 21

3.2.Диоды Шотки………………………………………………………………………….22

4.КОНТАКТ ПОЛУПРОВОДНИКОВ Р- И N-ТИПА………………………………………...24

4.1.Основные свойства p-n перехода…………………………………………………….24

4.2.Основные числовые характеристики p-n перехода…………………………………26

4.3Вольт-амперная характеристика p-n перехода……………………………………...27

5.ДИОДЫ НА ОСНОВЕ M-N, P-N ПЕРЕХОДОВ И P-I-N СТРУКТУРЫ……………….… 28

5.1.Мощный выпрямительный диод……………………………………………….…… 28

5.2.Импульсные и высокочастотные диоды………………………………………….… 29

5.3.Стабилитрон………………………………………………………………………..… 30

5.4.Варикап………………………………………………………………………………. 31

5.5.Диоды на основе p-i-n структуры…………………………………………………….32

5.6.Свето- и фото-диоды. Солнечные батареи…………………………………………..32

6.СТРУКТУРА МЕТАЛЛ-ДИЭЛЕКТРИК-ПОЛУПРОВОДНИК.

МДП-ТРАНЗИСТОР…………………………………………………………………………... 34

6.1.Основные свойства МДП-структуры……………………………………………… 34

6.2МДП-транзистор с индуцированным каналом……………………………………. 35

6.3.Основные параметры МДП-транзистора……………………………………….…. 36

6.4.Статические характеристики МДП-транзистора…………………………………. 38

6.5.МДП-транзистор с плавающим затвором…………………………………………. 41

6.6.Арсенид-галлиевый полевой транзистор…………………………………………. 42

7.N-P-N И P-N-P СТРУКТУРЫ. БИПОЛЯРНЫЙ ТРАНЗИСТОР…………………………. 43

7.1.Основные свойства биполярного транзистора…………………………………… 43

7.2.Биполярный транзистор в схеме с общей базой…………………………………... 44

7.3.Дрейфовый биполярный транзистор ……………………………………………… 47

7.4.Биполярный транзистор в схеме с общим эмиттером……………………………. 47

7.5.Статические характеристики биполярного транзистора………………………… 48

8.ИНЕРЦИОННЫЕ СВОЙСТВА МДП И БИПОЛЯРНЫХ ТРАНЗИСТОРОВ…………… 50

8.1.Причины инерционности МДП и биполярных транзисторов…………………… 50

8.2.Импульсные свойства МДП и биполярных транзисторов……………………… 52

8.3.Частотные свойства МДП и биполярных транзисторов……………………….. 54

3

9.IGBT – ТРАНЗИСТОР………………………………………………………………………. 55

10.КОНТАКТ ПРОВОДНИК - ВАКУУМ. ЭЛЕКТРОННЫЕ ЛАМПЫ…………………… 56

11.КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ЭЛЕКТРОННЫХ ЭЛЕМЕНТОВ………… 59

11.1.Компьютерная модель диода………………………………………………………59

11.2.Компьютерная модель транзистора……………………………………………… 61

12.ШУМЫ ЭЛЕКТРОННЫХ ПРИБОРОВ…………………………………………………… 63

13.СПИСОК ЛИТЕРАТУРЫ………………………………………………………………….. 66

4

ВВЕДЕНИЕ

Настоящее пособие призвано восполнить острую нехватку учебной литературы по дисциплине «Физические основы электроники», связанную с внешними факторами. Например, переход к бакалавриату, чрезвычайно быстрые и радикальные изменения в электронике (переход к новой элементной базе, новым методам разработки, изготовления и эксплуатации аппаратуры). Теперь главной задачей вуза является подготовка бакалавров с широкой гибкой общей эрудицией. Потребность в разработчиках с узкой специализацией хотя и актуальна, но единична и требует намного более высокого уровня школьной, вузовской и послевузовской подготовки.

Немногочисленные общедоступные издания, которые можно рекомендовать для изучения отдельных вопросов курса ФОЭ, крайне неудобны в целом и отличаются плохим соответствием современности и задачам курса. Так, в [1] и [2] большое внимание уделяется p-n переходу и диодам на его основе, в том числе исчезнувшим из электроники германиевым, туннельным, обращенным диодам. Достаточно изучить каталог любого крупного производителя полупроводниковых элементов, чтобы понять, что основными на сегодня являются диоды с m-n, гетеро- и p-i-n структурами. Последним в данных изданиях в лучшем случае уделены только отдельные страницы. Преувеличено и неактуально внимание к биполярным и тиристорным структурам, тогда как основной сегодня является МДП-структура и ее многочисленные варианты. Стремительно распространяющиеся IGBT приборы, как правило, даже не упоминаются. Большим недостатком неспециальной литературы является также невнимание к крайне важному факту: главным средством описания и изучения свойств современных электронных элементов, а также главным инструментом разработки, изготовления и эксплуатации изделий электроники стало компьютерное моделирование.

В условиях крайне ограниченных объёмов лекционного курса и данного пособия авторы сочли нужным избежать излишней детализации и сосредоточиться на главном – концепциях, принципах, проблемах, методах в физических основах современной электроники.

5

1.ОБЩАЯ ХАРАКТЕРИСТИКА ВЕЩЕСТВ В ЭЛЕКТРОНИКЕ

1.1.Электрические свойства веществ. Полупроводники

Проводники содержат большое количество носителей заряда, способных перемещаться под действием электрического поля. Такие заряды называют подвижными, их направленное движение – электрическим током. Сила тока i определяется скоростью перемещения суммарного заряда подвижных носителей Q: i = dQ/dt. Способность вещества пропускать ток называется электропроводностью. Электропроводность определяется, главным образом,

плотностью концентрации или просто концентрацией подвижных носителей

– их количеством в единице объёма. Типичными проводниками являются металлы. Для них характерна высокая концентрация подвижных зарядов –

свободных электронов.

Диэлектрики практически не содержат подвижные заряды, их электропроводность ничтожна. Такими свойствами обладает большое число веществ.

Полупроводники занимают промежуточное положение по электропроводности межу проводниками и диэлектриками. Типичным и самым распространённым в электронике полупроводником является кремний (Si). Широкое применение находят также некоторые соединения, например арсенид галлия (GaAs), нитрид галлия (GaN).

Чистые, или собственные полупроводники содержат атомы только одного вида. Если в полупроводник при изготовлении намеренно введены примеси определённого вида в необходимой концентрации, то это примесный полупроводник. Полупроводники, как правило, используются в кристаллическом виде. В кристаллах атомы располагаются на строго определённых расстояниях друг от друга, в строго определённом взаимном расположении. Это гарантирует предсказуемость и повторяемость электрофизических свойств полупроводника, их однородность и, следовательно, независимость от источника сырья, места, времени и условий изготовления.

Кристаллическая решётка кремния условно изображена на рис. 1. Кружки здесь – атомы кремния, двойные линии между кружками – связи между атомами. Такие связи возникают благодаря валентности – способности атомов образовывать связи друг с другом и удерживаться на определённом расстоянии друг от друга. Валентные связи (в данном кристалле ковалентные связи – их частный случай) обеспечиваются парами валентных электронов – электронов внешней, валентной орбиты (оболочки), по одному от каждого из связанных атомов. Именно внешними оболочками «соприкасаются» атомы при сближении, и именно валентные электроны образуют связи с соседними атомами. Согласно рис. 1 каждый атом кристаллического кремния обладает четырьмя валентными электронами и связан с четырьмя соседними атомами, т.е. валентность кремния равна 4.

6

Рис. 1

На рис. 1 кристаллическая решётка изображена в идеальном состоянии. Однако в реальности полупроводник не может быть абсолютно чистым и бездефектным. От посторонних примесей и дефектов тщательно избавляются при изготовлении кристаллов для электронных элементов.

1.2. Электрические заряды в полупроводниках

Идеальное состояние решётки невозможно также при любой температуре, превышающей абсолютный нуль. При этом атомы и электроны хаотично колеблются относительно своих исходных положений, т.е. обладают некоторой тепловой энергией. Амплитуда и направление колебаний случайны и, вследствие обмена энергией между соседними атомами, энергия хаотических тепловых колебаний электронов в некоторые моменты времени оказывается достаточной, чтобы они преодолели притяжение ядра и покинули атом. Такие электроны называются свободными или электронами проводимости, т.к. способны направленно двигаться под действием электрического поля. Свободными становятся, прежде всего, валентные электроны, наиболее удалённые от ядра и наименее с ним связанные.

На месте валентного электрона, ставшего свободным, образуется так называемая дырка – микрообласть с зарядом +q *, в которой отсутствует валентный электрон. Заряд появляется здесь вследствие нарушения равенства суммарного заряда электронов атома и заряда его ядра. Процесс образования свободного электрона и дырки, или электронно-дырочной пары, называется генерацией, рис. 2а. Если генерация обусловлена тепловыми движениями атомов, то это термогенерация. Генерация может вызываться и получением кристаллом других видов энергии, например, световой при освещении полупроводника.

* q – элементарный, или единичный электрический заряд, равный 1,6*10-19 Кл. Заряд электрона равен –q, дырки +q.

7

Рис. 2

Одновременно с генерацией происходит обратный процесс – рекомбинация. При этом перемещающийся по полупроводнику свободный электрон попадает в область дырки, восстанавливает ковалентную связь и вновь становится валентным. Восстанавливается валентная связь и электрическая нейтральность данной микрообласти, свободный электрон и дырка исчезают, рис. 2б. В собственном полупроводнике генерация и рекомбинация свободных электронов и дырок происходит только парами,

поэтому собственная концентрация свободных электронов ni и собственная концентрация дырок pi равны. Генерация происходит за счёт поглощения внешней энергии. Рекомбинация сопровождается её выделением, так как свободный электрон, превращаясь в валентный, теряет часть своей энергии. В частности, при рекомбинации полупроводник может светиться, что используется в светодиодах.

Дырка, как и свободный электрон, считается подвижным носителем заряда. При перемещении дырка заполняется не свободным, а соседним валентным электроном. Валентный электрон при этом остаётся валентным, его энергия не изменяется. Дырка исчезает на прежнем месте и возникает на новом месте, т.е. перемещается. Хотя при этом фактически перемещаются валентные электроны, воспринимается это, как перемещение единичного положительного заряда. Таким образом, перемещение зарядов в полупроводнике, т.е. возникновение тока, вызывается независимым друг от друга движением свободных электронов и дырок. Поэтому ток в полупроводниках может иметь как электронную In, так и дырочную Ip составляющие. Движение дырки поясняет рис. 3.

8

Рис. 3

Наряду с подвижными зарядами важную роль играют неподвижные заряды – ионизированные атомы веществ, чаще всего примесей. Ионами называют атомы, утратившие часть своих электронов (положительные ионы) или захватившие посторонние электроны (отрицательные ионы). Ионы в твёрдых веществах не способны перемещаться и создавать ток. Однако, как и любые другие электрические заряды, они способны создавать электрическое поле, влияющее на подвижные заряды.

1.3. Энергетические диаграммы

Энергетическая диаграмма – график с главной осью y, на которой откладываются значения энергии W электронов вещества, обычно в электронвольтах, эВ. Ось x позволяет отобразить изменение энергии вдоль главной координаты, в направлении движения носителей заряда. На рис. 4 изображена энергетическая диаграмма собственного полупроводника для образца с длиной l. Серые области соответствуют возможным значениям энергии электронов (разрешённые зоны). Промежутки между ними – запрещённые зоны. Электронов, имеющих энергии, находящиеся в пределах запрещённых зон в веществе нет. Количество разрешённых и запрещенных зон в различных веществах различно.

В проводниках запрещённых зон нет вообще, в диэлектриках верхняя запрещённая зона очень широкая. Для полупроводников в электронике наиболее важны три верхних зоны (рис. 4). Самая верхняя из них, зона проводимости, соответствует энергиям свободных электронов. Под ней располагается запрещённая зона, электронов в которой нет*. Разрешённая зона ниже – валентная зона, соответствует энергиям валентных электронов.

* Часто используемое выражение «электрон находится в зоне…» указывает не на место его расположения в пространстве, а на значение его энергии.

9