Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

279528

.pdf
Скачиваний:
19
Добавлен:
09.02.2015
Размер:
7.85 Mб
Скачать

30

Введение в возрастную анатомию и физиологию

Изучение возрастной анатомии и физиологии в республике развивалось параллельно с исследованиями анатомии и физиологии человека на медицинских и биологических факультетах Белорусского государственного университета и других университетов Беларуси. В настоящее время исследования ведутся по следующим направлениям: возрастные особенности пищеварительной системы (А.П. Амвросьев), возрастные изменения органов мочеполовой сферы (А.Н. Гарбузов, Г.П. Дорохович, Е.С. Околокулак), возрастные особенности слухового и вестибулярного анализаторов (З.И. Ибрагимова, Г.Г. Бурак), развитие и строение органов и регулирующих систем организма в эмбриогенезе человека (Д.М. Голуб, А.С. Леонтюк, П.И. Лобко, И.М. Турецкий), антропометрия новорожденных (И.Н. Серегов).

7. Анатомическая терминология

В пособии используются универсальные названия различных структур организма согласно международной классификации анатомических терминов. Исторически сложилось, что большинство анатомических терминов имеют латинское или греческое происхождение, и эти термины общеприняты. Некоторые анатомические термины объясняются непосредственно в тексте.

Для стандартизации подхода к изучению анатомии человеческого тела принято следующее: тело находится в вертикальном положении, руки опущены по бокам ладонями вперед. В этом положении тело можно рассматривать в трех измерениях. Линии раздела называются плоскостями, которые уточняют положение тела в пространстве. Под сагиттальной плоскостью понимается вертикальная плоскость, посредством которой тело мысленно рассекается в направлении пронзающей его стрелы спереди назад и вдоль тела. Сагиттальная плоскость проходит как раз посередине тела, делит его на две симметричные половины: правую и левую. Плоскость, тоже идущая вертикально, но под прямым углом к сагиттальной, параллельно лбу, называется фронтальной. Она делит тело на передний и задний отделы. Третья, горизонтальная, плоскость проводится горизонтально, то есть под прямым углом как к сагиттальной, так и к фронтальной плоскостям. Она делит тело на верхний и нижний отделы.

Расположение органов и частей тела по отношению друг к другу описывается следующим образом. Отдельные точки или линии в плос-

7. Анатомическая терминология

31

костях, располагающиеся ближе к срединной плоскости, обозначаются как медиальные-, лежащие дальше срединной плоскости — как латеральные. Например, почки латеральны (находятся сбоку) по отношению к позвоночнику, который проходит медиально по отношению к почкам (т.е. ближе к срединной плоскости). Расположение более кнутри или кнаружи туловища, головы или конечностей: ближе

кпередней поверхности тела — передний, или вентральный, ближе

кзадней поверхности — задний, или дорсальный. Так, например, спинной мозг располагается дорсально к стенке брюшной полости, но вентрально к коже спины. Расположение относительно к горизонтальному сечению: ближе к верхнему концу тела — верхний, или краниальный, ближе к нижнему концу — нижний, или каудальный. Эти термины часто используют для описания положения органов или структур относительно друг друга.

По отношению к частям конечностей употребляются термины проксимальный или дистальный: проксимальный (близкий) обозначает части, расположенные ближе к месту начала конечности у туловища, дистальный (отдаленный) — дальше от начала конечностей.

Термины наружный и внутренний применяются для обозначения положения в отношении полости тела и целых органов, в смысле более кнутри или более кнаружи лежащий. Расположение органов относительно поверхности и центра тела описывают терминами поверхностный и глубокий. Термины ладонный и подошвенный используют для описания внутренней и нижней поверхности собственно кисти и стопы.

1

ОРГАНИЗМ ЧЕЛОВЕКА И СОСТАВЛЯЮЩИЕ ЕГО СТРУКТУРЫ

1.1. Клетка

Клетка — это структурная и функциональная единица живых организмов, осуществляющая рост, развитие, обмен веществ и энергии, хранящая, перерабатывающая и реализующая генетическую информацию. Клетки разнообразны по размерам и форме в зависимости от выполняемой в организме функции. Размеры клеток человека варьируют от нескольких (лимфоциты) до 200 (яйцеклетка) микрометров. По форме клетки могут быть шаровидными, веретенообразными, плоскими, кубическими, звездчатыми, отростчатыми и др.

Строение клетки

Клетка состоит из трех основных частей: плазматической мембраны, цитоплазмы в виде коллоидной системы с неорганическими ионами, продуктами пластического и энергетического обмена и органеллами, ядра с генетическим материалом клетки (рис. 1). Поверхностный комплекс включает в себя гликокаликс, плазматическую мембрану, или плазмолемму, и кортикальный слой цитоплазмы. В цитоплазме выделяют гиалоплазму (матрикс), органеллы

ивключения. Основными компонентами ядра являются кариолемма, нуклеоплазма, хромосомы и ядрышко. Плазмолемма, кариолемма

ичасть органелл образованы биологическими мембранами.

Рис. 1. Строение клетки (схема):

1 — цитоплазма; 2 — агранулярная эндоплазматическая сеть (ретикулум); 3 — плазматическая мембрана; 4 — ядро; 5 — ядрышко; 6 — гранулярная эндоплазматическая сеть; 7 — лизосома;

8 — митохондрия; 9 — рибосомы

1.1. Клетка

33

Биологическая мембрана

Биологическая мембрана представляет собой двойной слой молекул липидов (билипидный слой). Каждая такая молекула имеет две части — головку и хвост. Хвосты гидрофобны и обращены друг к другу. Головки гидрофильны и направлены кнаружи и внутрь клетки. В билипидный слой погружены молекулы белка. Некоторые белковые молекулы пронизывают мембрану: один конец молекулы обращен в пространство по одну сторону мембраны, другой — по другую. Такие белки называют трансмембранными. В других белковых молекулах только один конец обращен в околомембранное пространство, а второй лежит в наружном или внутреннем слое мембраны. Их называют соответственно внешними или внутренними. Толщина всей мембраны составляет 9-10 нм. Липидные наружные плотные слои имеют толщину 2,5 нм, а средний — около 3 нм.

Плазмолемма образует простые и сложные контакты с соседними клетками. Простые соединения представлены выростами оболочки одной клетки, которые заходят между таковыми соседней. Сложные контакты образованы плотно прилежащими друг к другу клеточными оболочками или наличием десмосом и нексусов.

Важным свойством мембраны является ее избирательная проницаемость. Существует ряд механизмов, обеспечивающих проникновение веществ в клетку: пассивный и активный транспорт, эндо- (фаго- и пиноцитоз) и экзоцитоз. Пассивный транспорт осуществляется через формируемые белками каналы по градиенту концентрации без затраты энергии. Разновидностью пассивного транспорта веществ является диффузия, обеспечивающая движение молекул из области высокой концентрации в область низкой концентрации до состояния равновесия. Активный транспорт сопряжен с затратой энергии (АТФ) и происходит против градиента концентрации. В этом процессе участвуют белки-переносчики, образующие так называемые насосы. Эндоцитоз — это процесс поглощения веществ путем образования выростов плазматической мембраны и формирования пузырьков, отшнуровывающихся в цитоплазму. Экзоцитоз осуществляется в обратном порядке и сопровождается выделением веществ из клетки. Концентрация веществ (катионов и анионов) по обе стороны мембраны неодинакова. Поэтому каждая сторона несет свой электрический заряд. Различия в концентрации ионов создают соответственно и разность электрических потенциалов.

34

1. Организм человека и составляющие его структуры

Внешняя поверхность плазмолеммы покрыта гл и кокал иксом, который представляет собой совокупность молекул, связанных с белками мембраны, и состоит из углеводов. Толщина его различна и колеблется в разных участках поверхности одной клетки от 7,5 до 200 нм.

К глубокой поверхности плазмолеммы примыкают поверхностные структуры цитоплазмы, которые связываются с белками плазмолеммы и передают информацию глубинным структурам. Они также меняют свое взаимоположение, что приводит к изменению конфигурации плазмолеммы.

Цитоплазма

Внутреннее содержимое клетки представлено цитоплазмой. Она включает в себя гиалоплазму и расположенные в ней органеллы и включения.

Гиалоплазма представляет собой сложную коллоидную систему, которая создает условия для осуществления физиологических реакций клетки и протекания биохимических процессов. Она состоит из белков, нуклеиновых кислот, полисахаридов, ферментов и других веществ. Гиалоплазма обеспечивает связь между органеллами и поддерживает постоянство внутренней среды. Именно в гиалоплазме взвешены органеллы и включения.

Органеллы (органоиды) — элементы цитоплазмы, имеющие свою структуру и выполняющие конкретные функции клетки. Органеллы, встречающиеся во всех клетках, называются органеллами общего назначения, а присущие только некоторым специализированным видам клеток — специальными органеллами. В зависимости от того, включает структура биологическую мембрану или нет, различают органеллы мембранные и немембранные.

К немембранным органеллам общего назначения относятся цитоскелет, клеточный центр и рибосомы.

Цитоскелет включает в себя микротрубочки, микрофиламенты

ипромежуточные филаменты. Микротрубочки пронизывают всю цитоплазму клетки. Каждая из них представляет собой полый цилиндр диаметром 20—30 нм. Стенка микротрубочки имеет толщину 6—8 нм

иобразована 13 нитями, скрученными по спирали одна над другой. Каждая нить состоит из белка тубулина, который синтезируется на мембранах гранулярной эндоплазматической сети. Сборка нитей в спирали осуществляется в клеточном центре. Главной функцией микротрубочек является обеспечение основных потоков внутрикле-

1.1. Клетка

35

точного активного транспорта. Микрофиламенты — это белковые нити толщиной 4 нм. Большинство из них образовано молекулами актина, меньшая часть тропином и тропомиозином. Микрофиламентов много в цитоплазме, прилегающей к поверхностному комплексу. Они меняют конфигурацию мембраны, что обеспечивает процессы пиноцитоза и фагоцитоза. Этот механизм используется клеткой для образования выростов ее поверхности — ламеллоподий. Клетка закрепляется выростом за окружающий субстрат и может переместиться на новое место. Промежуточные филаменты имеют толщину 8—10 нм и представлены длинными белковыми молекулами. Они тоньше микротрубочек, но толще микрофиламентов, за что и получили свое название.

Клеточный центр образован двумя центриолями (диплосома) и центросферой. Центриоли расположены под углом друг к другу. Каждая центриоль представляет собой малый цилиндр длиной 0,4 мкм, шириной 0,2 мкм. Стенка цилиндра состоит из девяти комплексов микротрубочек длиной 0,5 мкм и диаметром около 0,25 мкм. Каждый комплекс образован тремя микротрубочками и называется триплетом. Вокруг диплосомы располагается плотная бесструктурная центросфера, от которой радиально отходят тонкие фибриллы. Центриоли являются саморегулирующимися структурами, которые удваиваются в клеточном цикле. Центриоли участвуют в образовании ресничек и жгутиков, а также митотического веретена. Основная функция клеточного центра — сборка микротрубочек.

Рибосомы представляют собой тельца размером 20 х 30 нм, состоящие из двух субъединиц — большой и малой. Каждая субъединица является комплексом рибосомальной РНК (рРНК) и белков. Большая содержит три молекулы рРНК и 40 молекул белка, малая — одну молекулу рРНК и 33 молекулы белка. Синтез рРНК осуществляется

вядрышке. Основная функция рибосом — это сборка белковых молекул из аминокислот, доставляемых транспортной РНК (тРНК). Между субъединицами рибосомы имеется щель для прохождения молекулы информационной РНК (иРНК). На большой субъединице есть бороздка, в которой располагается и по которой выходит формирующаяся белковая цепь. Сборка аминокислот производится в соответствии с чередованием нуклеотидов в цепи иРНК. Так осуществляется трансляция генетической информации. Рибосомы могут находиться

вцитоплазме поодиночке либо группами. В последнем случае рибосомы называются полисомами, или полирибосомами. Большая часть

36

1. Организм человека и составляющие его структуры

рибосом прикрепляется к мембране эндоплазматической сети. Свободные рибосомы синтезируют белок, необходимый для жизнедеятельности клетки, прикрепленные — белок, подлежащий выведению из клетки.

К мембранным органеллам общего назначения относятся митохондрии, эндоплазматическая сеть, комплекс Гольджи, лизосомы и пероксисомы.

Митохондрия — органелла палочковидной формы, длиной 0,3- 5 мкм, шириной 0,2—1 мкм. Сверху она покрыта двумя мембранами, между которыми располагается мембранное пространство шириной 10-20 нм. Внешняя мембрана ровная, внутренняя образует многочисленные кристы в виде гребневидных выростов. Пространство между кристами заполнено коллоидным митохондриальным матриксом, содержащим рибосомы и небольшое количество ДНК. К поверхности крист прикрепляются элементарные частицы (до 4 тыс. на 1 мкм2 мембраны) грибовидной формы. В них сосредоточены АТФ-азы — ферменты, обеспечивающие синтез и распад АТФ. Митохондрии выполняют энергетическую функцию, в них происходит окисление органических веществ, в результате чего освобождается энергия, необходимая для синтеза АТФ. Митохондрии, в отличие от других органелл, обладают собственной генетической системой (ДНК, РНК и рибосомы), поэтому способны размножаться в клетке путем деления или «отшнурования» фрагментов, т.е. являются самовоспроизводящимися органеллами. Количество, размеры и расположение митохондрий в клетке зависят от функции клетки и ее потребности в энергии. Митохондрий много в печеночной клетке, клетках сердца и мышц.

Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему канальцев, вакуолей и цистерн, отграниченных мембранами. На мембранах осуществляются первичные синтезы веществ, необходимых для жизнедеятельности клетки. Большинство веществ синтезируется на наружной поверхности мембран, а затем переносится внутрь эндоплазматической сети и там транспортируется к месту дальнейших биохимических превращений. На концах трубочек сети они накапливаются и отделяются от них в виде транспортных пузырьков. В перемещении их участвуют микротрубочки. Различают два типа эндоплазматической сети: гранулярную (зернистую) и агранулярную (гладкую), которые представляют собой единое целое. Наружная сторона мембраны гранулярной сети покрыта рибосомами, здесь осуществляется синтез белков. Поверхность

1.1. Клетка

37

гладкой сети лишена рибосом и служит местом синтеза углеводов и липидов. Кроме того, гладкая эндоилазматическая сеть является депо ионов кальция и в связи с этим участвует в сокращении мышц. Сама сеть образована множеством мелких трубочек диаметром 50 нм каждая. Между трубочками расположены гранулы гликогена. По просветам сети вещества сначала передвигаются, потом отшнуровываются в виде пузырьков, затем транспортируются к комплексу Гольджи и, наконец, сливаются с ним. От комплекса Гольджи вещества в пузырьках поступают к местам своего использования. В зависимости от функционального состояния клеток эндоплазматический ретикулум подвергается сборке или разборке.

Комплекс Гольджи— это совокупность цистерн, канальцев и вакуолей. Основные элементы комплекса — диктиосомы, число которых колеблется от одной до нескольких сотен. Диктиосомы связаны между собой каналами, имеют форму чаши и диаметр 1 мкм, содержат 4 - 8 лежащих параллельных уплощенных цистерн. Концы цистерн расширены. От них отщепляются пузырьки и вакуоли с различными веществами. Эти пузырьки имеют диаметр 50-100 нм, содержат гидролитические ферменты и являются предшественниками лизосом. Цистерны обращены в сторону эндоплазматической сети. Транспортные пузырьки, отщепляющиеся от сети и несущие продукты первичного синтеза, присоединяются к этим цистернам, в которых продолжается синтез сложных веществ, т.е. происходит модификация приносимых макромолекул. По мере модификации вещества переходят из одних цистерн в другие. Сторону комплекса Гольджи, куда поступают вещества от сети, называют цис-полюсом, а противоположную — транс-полюсом. На боковых поверхностях цистерн (транс-полюс) возникают выросты, куда перемещаются вещества. Выросты отщепляются в виде пузырьков, которые удаляются от комплекса в различных направлениях. Судьба пузырьков различна, одни из них направляются к поверхности клетки и выводят синтезированные вещества в межклеточное пространство. Часть этих веществ представляет собой продукты обмена, а часть биологически активные вещества — секреты. В процессе упаковки веществ в пузырьки расходуется большое количество мембран, которые должны восполняться. Поэтому сборка мембран — это еще одна из функций комплекса Гольджи.

Лизосомы представляют собой мембранные пузырьки диаметром 0,4—0,5 мкм, в которых содержится 50 видов различных гидролитических ферментов. Молекулы этих ферментов синтезируются на фану-

38

1. Организм человека и составляющие его структуры

лярной эндоплазматической сети, откуда переносятся транспортными пузырьками в комплекс Гольджи, где модифицируются. От цистерн комплекса отпочковываются первичные лизосомы. Все лизосомы клетки формируют лизосомное пространство, в котором поддерживается кислая среда (рН 3,5—5,0). Мембраны лизосом устойчивы к находящимся в них ферментам и защищают от них цитоплазму. Повреждение их приводит к активации ферментов и гибели клетки. Функция лизосом — это переваривание высокомолекулярных соединений и частиц. Последними могут быть собственные органеллы или поступившие

вклетку частицы, которые окружаются мембраной и называются фагосомой. Первичная лизосома сливается с фагосомой и образуется фаголизосома, или вторичная лизосома. Во вторичной лизосоме ферменты активируются и расщепляют вещества. Продукты расщепления транспортируются через лизосомную мембрану. Непереваренные вещества остаются в лизосоме и могут сохраняться долго в виде остаточных телец, окруженных мембраной. Остаточные тельца уже являются включениями. В случае, когда вещества в лизосоме расщепляются полностью, мембрана распадается, фрагменты ее направляются

вкомплекс Гольджи и вновь используются для сборки. Если необходима замена участков цитоплазмы или органелл в результате процесса старения клетки, то образуется аутофагосома, в которой перевариваются структуры органеллы. Таким образом, аутофагия представляет собой механизм обновления внутриклеточных структур — внутриклеточную физиологическую регенерацию.

Пероксисомы — мембранные пузырьки диаметром от 0,2 до 0,5 мкм. Как и лизосомы, они отщепляются от цистерн транс-полюса комплекса Гольджи. Под мембраной пузырька различают центральную плотную и периферическую области. Пероксисомы делятся на мелкие и крупные. Мелкие пероксисомы (диаметр 0,15—0,25 мкм) содержатся во всех клетках и практически не отличаются от первичных лизосом. Крупные пероксисомы (диаметр больше 0,25 мкм) присутствуют лишь в некоторых тканях (печень, почки). В них выделяется кристалловидная сердцевина с концентрированными ферментами. Функция пероксисомы — участие в нейтрализации многих токсических соединений, прежде всего перекиси водорода.

К специальным органоидам относятся щеточная кайма, стереоцилии, базальный лабиринт, реснички, жгутики, кинетоцилии и миофибриллы. Самыми распространенными являются реснички и жгутики.

1.1. Клетка

39

Реснички являются выростами клетки, окруженными плазмолеммой. У основания ресничек находится базальное тельце (кинетосома), которое образовано девятью периферическими триплетами коротких микротрубочек, окружающих один белковый центральный цилиндр. Каждый периферический триплет соединен с ним посредством белковых «спиц». В центральный цилиндр направляется осевая нить (аксонема), тоже образованная микротрубочками. На уровне базального тельца микротрубочки аксонемы тоже образуют девять периферических триплетов, но далее одна из микротрубочек редуцируется, а в центральной группе появляется пара микротрубочек, окруженная белковой оболочкой. Поэтому на протяжении реснички тянутся дуплеты микротрубочек: девять дуплетов на периферии, один — в центре. Реснички являются производными поверхностного комплекса клетки и клеточного центра. Вначале происходит многократное деление центриолей, а затем они мигрируют к поверхности клетки и здесь выстраиваются соответственно строению реснички.

Жгутики напоминают ресничку, но они длиннее. И те и другие выполняют функцию движения. Все реснички совершают координированные колебания. Они похожи на движения рук пловца брассом. Сначала ресничка резко наклоняется над поверхностью клетки, далее совершает поворот на 180°, затем снова выпрямляется и начинается новый цикл. Число ресничек на клетке обычно достигает нескольких сотен.

Включения — скопления веществ в клетке, возникающие как продукты ее метаболизма. Включения активно используются клеткой, но сами ферментативной активностью не обладают. Среди включений различают трофические, пигментные и секреторные. К трофическим относятся капли жира, гранулы гликогена и белка, которые накапливаются в клетке, а затем расходуются ею при возникновении соответствующих потребностей. Большинство трофических включений лежит в гиалоплазме свободно. Пигментные включения могут лежать свободно (гемоглобин), но могут быть окружены и мембраной (гранулы меланина). Секреторные гранулы отделяются от комплекса Гольджи и несут синтезированные клеткой вещества.

Ядро

Большинство клеток имеет округлое или овальное ядро размером 3-25 мкм. Наиболее крупное ядро у яйцеклетки. Ядро покрыто сверху оболочкой, или кариолеммой. Она образуется из цистерн эндоплазма-

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]